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1 ABSTRACT

Reported here are the results of a threc year study of the high

late volumetric Propeorties of Snow. In addition to the report j-reso!nte-d

here, the project rusulted with over ten pub] ications (brown 1lJ74-1981
Bowles 1,181, Rose', 1981) which are included in tht! list of reference(s.

3 'atiically by moatis, of two microdvnami(,cai models. These are thon evoluate d

hy meoans of p-re.viousi uxperimental data. A niumber of apiplications are

then investigated. These applications include vehicle mobility: in

cb11 low and deep sjnowpack, ,,teady shockwaves, and noiistieady oe.av.

-An na, 1, -lromacgnetic -;Lrus wave qieratoc wa.s d#-:3iqne-d , con.-tructci1

3and used in a shockwavez tustiny program on snow. i~xjporimental rcsults

are, presented and discussed.
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I
1. INTRODUCTION

This report is concerned primarily with the high strain rate volumetric

fproperties of snow. This work was originally oriented toward the analysis

of shockwaves in snow, but as the project progressed, it became apparent

that the study would have to include a major effort to (evaluate the

volumetric properties of snow. This property of snow must be known

be-fore a number of probtems involving snow can he studied.

( The mechanical properties of snow have been under active investigation

for over forty years. Mellor (1974, 1977) has made thorough reviews of

ast investigative work on the propurties of snow. Salm (1981) has

[ rek.c:ntly made a more up to date review and has described the current

state of the art.

[ Early work (1940-1960) was directed at evaluating the linear properties

of snow. Work typical of this period includes work by Kinosita (1967).

Latt.r work by Lee (1961,1963), and Salm (1974) extended the earlier work

on thte linear properties of snow. Most of this work concentrated on the

linear viscoelastic properties. At low enough strain rates, say at

3 rates less than 10 s , snow does exhibit linear properties, althouqh the

deformation is generally inelastic. Most linear constitutive relations

used to describe the behavior of snow- have the forms

- t
T 0Gt-7) (d' )d+ X(t-T)itr :()d[ (1.1)

where T is the stress tensor, E is the strain tensor and G and ) are respectively

tho shear and volumetric relaxation moduli. The above equation can be inverted

3 to describe the strain in terms of the history of the stress. These forms of

the constitutive laws are valid only so long as the material behaves as a

I linear viscoelastic material. Figure 1 shows the typical uniaxial rate of

I1
I
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du fol ma Lionl and creelr, s n Cutv yeS Llio at rsult wi Lii 1 ii..ir Cvi see: _Ia s I i e

materials. This is snown in the(_ (ase of solid lines. Actual res ponse c.urves -

t or -;now are shownwi th the broken lines._- "In order for a miaterial, to trul 1y

visCceaStic, the creel c.urve inust :;how the characteristic-s of- th.. solid r

For)C.1 istance, inl Fi ure 1(a) , the creel. curve consists of two icart~s. Thu first

part reprcsemts the strains whiCh develop When01 the conStan1t a~il' T st~c'1 i

aipllied. The seconld part represents the ru.covury which occur,, when th. !(,ad

is released. A viscoelastic rebound which equals the. initial e-lastic strdin[ occurs immediately ulpon load application.

Snotw floes not. show this true visc:oelas tic behavior. IL'- -oeLvidle

of this is dumonstra Led in the crees curve wheni the st.e 55m s r fc ; n the

case of snow, the instantaneous elastic response_ may ho) h-ut a sinaI 1 froction uf.

vii, in it ial elastic strain. Aside from) this c-ase thu crelj anid A unt o

t-st d,) nt radiy show this particular behaivioi.. In pirticular ti., !,-:forma

he :r-s~ m.j. i on r dt-, teue L!;, o rieu ma y e r r orneCu s I " conII,] u d, t.huI trt !.II"w i Id Id a

I rie~r vi!ecolastic: material. The rate, curves shown in Figjure. con.-:i.:;ti of

1w rat. S h 'Irs part of the curve shows tne buildup of stress as th,

I mate-rial is subjected to a constant uiiiaxial strain rate, whereas the Second

I part jives the relaxation of stress after the strain rate is stopped and main-

tait1at a cori';tart value. Some di ffurencus do eme rge ini the relaxation

curvos, but genera]lly it is not very significant.

The actual behavior of snow exhibits some characteristics of an elastic-

I viscoplastic matterial, since some of the initial elastic response when loaded

is; Iradually dissipated away. However, snow does also exhibit some very definite

viscoelastic characteristics. This makes snow a difficult material to model



3 with a single constitutive equation even 41n thu small strai rl-low strain-rate-

r gion. As a mattL' r of pragmatismi, most i as t inv stiqators have chosen to model

snow with a linear viscoelastic rejrentation similar to that of Eq. (1)

3 I" For most applications, such representations have been found to be arcejtab!o.

The above is seen to be particularLy true when on(- considers other i.rollemsII with characterizing snow properties. Snow is a highly variable mate:rial. Its

properties change drastically with temlurature, density, and the effects of

te.mptrature gradient metamorphism. Such prope(,rties as fracture stress ame

f :ompliance can go througih an order of magiiitude variation, and correctl, dofining

i,, properties is quite difficult..

Wl:on fini r;t rains or large .;trais rats I  li- 1 .

-r,.invld, snow exhiiUits d,1finitc nonlijnar pro rt. . .P5ill (.4 , Brown

t Il (1)73, 1-)74, 177) , Dusrues and others (1981) have characteri.zed t-h1s 0

osrties. Saim considered primarily the res; onse of sow to uniax a1 iefornati.

.int :V,; seu, . 1,',  d,-ve :o e*d a nonlinear vi,. ,:ee l tic ilO, to, . bsrown s ]s ter we) t-

Sws ,:assntiol y a thurmodynamic formulation in which compression, tension and

:har t (Lst ,ta was used to develop a three dimlens!ional con.;titutive equation

for snow. This formulation was shown to be quite accurate for a wide ranq:et of

deformation conditions. However, the constitutive equation was comlicated and

iumbrsom.-. 'Pherefore the aplicability to engineering problemis is limited.

i D,srues and otherS have recently formulated an increme!ntal constitutive equation,

i and Iis work should show good promise for solvinq some important engin-ering

roil,.lms.

I The al,ove nonliziear formulation; are still quite limited in the range of strain

ratf-s for which they are valid. All of the theories incur rather large errors for

-4 -1I e-tr.in rates above 10 s Under tension and shear these strain rates cause

3 4I'
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fracture. (Brown, 1974, 1977), but under some compre-ssive deformations, sustained

loading can be applied to snow without causing fracture.

There are a large number of problems in which the above discussed constitutivu

equations do not apply. This includes deformations which produce extrem.]y high 

strain rates (I'> 10-4 -1) and large strains (< > 0.2). Problems involving

eheckwavcs, *hvohice, travel, proj ect ile impact or ,(n'itration, among others are

examples of such situations. For instance vehicles traveling over a low densityI I a

snowl,ack can produce strain rates in excess of 10 s and increases in density

I of I HCm. harr ison WWI) reports on vehic;li, mobility studi e ; of tracke.d v:ihicit [

in .;nowpack. In instanc-s where little vehicle slitipagte occurs, the deformation

of th,- snow under the track is largely volum.tric, and this problem can L

analyzed with a relatively simple volumetric constitutive law (Brown 1979,

I ,1la, 1981L). In cases where the vehicle incurs significant slippage, then

i a multiaxial constitutive law is needed.

".l'.rosives are used to initiate avalanches in r.creational ar, as and

I along highways exposed to steep open slopes. These explosives produce

intens,, high frequency shockwaves which propagate into the snowpack.

I , pending on thle explosive sPeed, snowlack propertis and placement, the

shockwavu spreads arid attenuates. Strain rates on the order of 10 s5 -]

and volumetric strains as large as 20% can be induced. In order to analyz(e.

these problems, very specialized cunstitutive relations are required.

The military is also concerned about several problems concerning impact

I ( lding of snow. These include fuse action, ballistic penetration, and

iffeetiveness of artillery explosives in snow. For instance, artillery

fuses which work well in mud fail to detonate properly in snow. Also rifle

I fire has been shown to penetrate much less deeply into snowpack then origin-

I



ally thought. The unique propLrties of snow are responsibie for th(.se

surprising results.

Prior to the results reported here and the p[ap1ers published by the

author (Brown 1979-81), many of these probleims could not be analyz(d

analytically. In order to do so, appropriate c0nistitutive relations ar(:

needed. This report brings together the work of thr author on the hiqh! rat,-

volumetric properties of snow. Also included are applications to s, veral

prcblems. Finally recommendations to further work Ire also given.

I The work reported here concerns only the hiqh rate volumetric properties

)I snow. D.viaito.ic Properties are not considered here. Thfo reason for this

I ; that: ver'/ little is known about the high rate properties of snow, and a

,:ood starting point would be volumetric properties. In addition some impeirtant

Sroblem. can be studied if only the volumetric properties are known. Once

thef. volumetric properties are known, it is felt that these results can be

I to hole .'valut.c the deviatoric properties. A complete_, multiaxial

constitutive equation is necessarily qute complicated, and it would appear

to be best to approch this development in a systematic manner.

I
I
I
I
I
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I 'i~cctti V,'ocjltl~ A ciccicn Ci ft,.t tii,. t.; si. cL ~vc o(.tc

t i Iin tu-i: i I i~ t; I,;, VJ ,co) 1 e;L c c I I:i, li , )nclc i Oi, t Il -I I

1! I ItCI, 'Litt IC 01r NOcocr it; iiven to t-1e niece ;trcctural df-t oimit fo,

Jl; -cc i t;( ~id~ th i-r LctIL~et oii th pror t-i tj: oft t-i IiI1- , Atc I~

cc l aS,0ic I natm t11(2 ico ii c] a a . rc . 3 . i: IlicJ , n t. IA tc

J 1. is ia r La tivol. V straivqht forward lictl, cod. Curv-e- I itti~ng tecni(c 5 50t0

:cthu Ii ne-ar and nonlinear least squarecsz meticods art, commonly use-d in

ii.)U~ <lonwith StaLt: i tic,,al aria lysi s to de-terminoe just how Well1 a C~anst ;itutivc

I ~ ~ioii 0-c urks, This qct.prua(h is very straight forward for esicand I inuar

Vi c-cu lIasti emater jabs, but for olastic-vi scoplastic materials this apcoroach

-I ;.0 cOIIIO rllcl more diifficult, since very icitrica i c atEnati cal models

( -icl .. t,; U,, 1) Ic ;Ib eOcd,

141 t ru-ucit ly Byown, (I'll/'-, P)8 ) , and St. 1 wce( 1977)

I c~j~v- III i I ci1ccicyafitoI moducels L to ual at.' Ccoo:Ai tuti! 1e heries for

s;Ino'. . TIic alIj roachi codn:;idurs duformat ion mhaccnsat t-he' crystallin.

ifI. v. I ;itk imljortant tic deturmininq the macroscopcr behavior. This

: i d 2L '- , "' cb , i i c' Icatri al i s justj t i ahIlo ic f i e, ,n se hat th e b -

I~~~~ i (I th,. p.irecct materi l C ice) anid thec def-,a i~ on mechanisms at t-he

I iricular level must be resp~onsibile for the propcrti-s of the granular mateurial.

Alsoi this method ro's)ts with constitutive laws which qive much insight into

what-, m crostructural changes occur during deformation. Microdynamical

51 .ijiiroac#-s would consequently appeiar to be preferable to phonomenalogical

1k: ____7
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anld u. The matrix material, ice, is assumed to be i Iicomrssible, Sri tLt

I I~l st~i oal Iri and deomto rtenor.t rnu

- o " i 03oe oem' 2.tiicii rert essenal th.1 - of in o

A :- yelyti'<sls'4r inroo.od 0-rStrainI roit, '
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- (tr I .( .A. 5)

r' t r iinj I it!!; t i. trace of the tensor, 1 is the identity tensor , and

j i :'e' ttr!'o tensor. S thorefore has the comjxonents;
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, t), , ,, ti on .,i tntif I ar,t ) m .L( l

I i_ ,b iI. , thiS, t.ne fUJ lowI n : an arriv ,d at the all atins:

0 3-
* : - - + ... ,(l .LZ.7)

4 3

i '}: above L : u ItL a a Ct ntr ict Ly of a k nuniat ir. 1 natu re arid do pcrmd onl1'.'

i via the co:;riint of flatC iol incolrossi lit''. In addition, material

i 1 i:,.omj. C.r; ihi 11ty may bh, un.d to arrive; at the fol. uwing relat iofs:

,I - . .. . . < b 3 / (H 3  . (I.B a
i3 (I'i ' "' o ao ' ( I |. a

I (1. -a )

-I) a
' ( T.1 )

a{< ('' -'Ia
141 0 " T 4 e

As the external pressure 1' increases, the deformation proceeds in three

distinct phases:

l (1) an initial purely elastic phasu

(2) an elastic-plastic phase with an elastic/plastic interface

at r c, where a < c < b, and

I 15



(3) A fully plistic ithv;e-. Duritc the Fir:- t two phases, th. strtin-'

IL a;slmIM d to b I , i . C i ut du i o,_ i I'AS l I r ;( r,I A .'1

I Can ). ire urrot i. I A -h .i ii Ilow .y.

_ 1 _ly l I S t ii : Pt icnd. .

1111 th is hIs , , LIP t r-lA I -A ' Ia '.]

r ,r u'" (II. )

whr. u is the radi, i displ ace'mnnt; and if u i Ina co1 ll:aled ( .(I th I, u

ma,; be 1p)ro:.:d by the. exi,ra::sin

I 3

13 1r 2

I i r emall strains, r, differs by a small amount from r; therefore, in thi:

-4
s, tioii the distinction will be dropped. The strains Lecome

2 B I . ir 3 3 1I 
_ r B

(I.. 1 . 12 )

Since lthO mrit.-rial. is as: -imcd to be linearly elastic, the constitutive
I ~i ,u!ation acquir'o:s thu form

S 2(; /( (II.B. 13a)
r

s 2 (.( ( 2 /(r) (lI I. B. l31))

S 2(,e -2GB-/(3r ) (11 .B.13 )

wh.:re Sr' n , S, - are, rfs.t'tively, the dviatoric stre-ss and

deviatoric strain components. Since the material is incompressible, the

volumetric strain is zero, and the hydrostatic pressure 1 cannot be evaluated

with the constitutive equation alone.
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3 ~ ii ~1-1 ma~t~u itIn(Aifij-ft~ tcai!

-hc~u: ~: , odi tionSA i

I(I 111. 1,G)

It should be not,-d that pore 1ruc; ;ure i.- asc;utn'd iwqligiblo. I,,nd er o..t reomm y

Il('rat, a of loadiij or nl or low d.tc iti (say' l( '1. 2) ,the' wa.dorn

f '.a tfli ij onmay ~ Lizo 'Ml Ph a I bo discanned' i: muWrt, do ta I

oil i I a Li mt ~; tn :Incu

r - .~ + -V + 1 4~( 3) 1~.9

t int,, bounidary -uonditiona L11,., t l ut i li

'(:"II Ltheon bf_ u x 1ro: cri d jr, c tl1y i n te rm s o f I (t) by ma ki n a pprop r iaIteC U; e

of eo!n. 7 and 8. Th'ico, combined with eq. 20, yield

3) (ti-)

where
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I~ L ' I :;u~, i I1 , ria.t :akl ii ly I eii t :I rd . 'liiw

1 ui t tn uvonb.Y e q. C I].A. 3) is reachiekl at a priicl :2;1rt 1,

w~,nn Lii' prie ial deviatoric stres;s difference, S r- S, (a stecicl

Vilu 'IY, whi Lob i tnol f isi ratef. depitiden t.

As;sume now 11' P and that yi ldinqj nas propagated out to a radial

dI i Ito I o'(2C, d ob. For r -c, an inelastic stress state exists, and fur

r~c, tht. materiall is elastic. When analyzing the outer elastic zone, the

following boundary conditions apply:

0~ = P(t), r b (IT.13.24)
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where aP and Iy denote the value of p,: at r a and c, respectively. This
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jThe density ratio, however, is

a c - 0 l-(A/h 0 ) t (II.C.5)

and its rate is

- h-- 
(II.C.6)h 0*i

The constant rate tests do give a constant density ratio rate. Note,

* however, that the rate of change of density is not constant. For this set

of experiments, a was readily calcualted by eq 6 and eq II.B.47 was then

l utilized to find the variation of p and a for a given rate. Figure 5 shows

the comparison of theory with experiment for snow at -1OC and for three

initial densities. The data acquired by Abele and Gow (1975, 1976) included

a variety of strain rates, since different specimen sizes and crosshead

speeds were utilized. The data shown here reflect rates in the neighborhood

| of cI" lOs - 1 .

i The data available from Abele and Gow (1975, 1976) measured only a1 ,

the major principal stress, whereas the hydrostatic pressure p =-/3(10 2 + 03

I Was needed. Therefore, a series of experiments was run to measure lateral

stress as well as axial stress so that Abele's and Gow's data could be

I adjusted to reflect p rather than a1 . It was found that

3 0.6 a1< p<0.98a1  (II.C.7)

for all the experiments run, thereby fairly well bracketing the data report

I . by Abele and Gow (1975, 1976).

One interesting result was observed in the testing program. In tests

involving "old" snow, the lateral stress was found to be about 90% of the

axial stress, but for tests of "new" snow, the lateral stress was only 30-

40% of the axial stress. In each case, unbonded snow (sifted within two

hours of the time of testing) was used, so that the difference between the

i 26
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lateral stress in the old snow and that in the new snow must have been due

to differences in crystal structure, primarily crystal shape. The old snow

had undergone equitemperature metamorphism, and the crystals had a spherical

shape. The grains, therefore, were capable of rolling and sliding relative

to each other, thereby accommodating a lateral motion to produce a large

lateral stress. New snow, with its complicated grain structure, would not

allow this, thereby producing a smaller lateral stress.

As can be observed from Figure 5, the comparison between theory and

experiment is quite good, with the essential characteristics of the deformation

being represented by the theory.

Figure 6 compares theoretical pressure curves with data collected and

summarized by Mellor (1974). This figure contains results of laboratory

studies as well as field data relating density to gravity reasonable compared

with the data. It should be remembered that some of the data shown in this

figure represent uniaxial stress conditions, and that the actual hydrostatic

I pressures are only one-third the values shown for these data. Therefore,

some of the experimental curves would move down vertically relative to the

[ theoretical curves. However, since there is such a diverse range of load

histories, temperatures, and time ranges contained in Figure 6, any meticulous

adjustments would not necessarily change things that much. What can be

I said, though, is that eq II.B.48 appears to be functionally correct for
-3

snow with initial densities exceeding 300 kg m3.

Figures 7 and 8 further describe some important properties. The

deformation rate dependency is illustrated in Figure 7. For snow with anI| -3
initial density of 350 kg m , the stress response is shown as a function

I of density-ratio rate at three different instantaneous densities. As can

be seen, a rate dependency does exist, but the importance of rate decreases

I as rate increases. At rates characteristic of stress waves, therefore, one
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j might be able to assume a constant yield stress and achieve a simplified

version of the constitutive law given in eq. II.B.48. However, for lower

m rates, say in the range 105<J<1j<10, the rate dependency is significant

enough that such a simplifying procedure would not be recommended.

Figure 8 gives an indication of just how effectively snow can absorb

energy during compaction. In particular, this figure shows the work required

to compact snow to a terminal density of 700 kg m 3 for a range of initial

densities and density-ratio rates. One can see inunediately that initial

density has a dramatic effect on work required to compress snow. Density-

ratio rate is also significant but certainly much less so than initial

I density.

Il.D. DEVELOPMENT OF CONSTITUTIVE LAW FOR NECK GROWTH MODEL

The deformation of porous material such as snow involves several

different mechanisms which act simultaneously to varying extents. Three

such mechanisms are: (a) pore collapse, (b) intergranular glide, and (c)

I inelastic deformation of intergranular necks. Pore collapse and neck

deformation both involve deformation of the matrix material, whereas inter-

granular glide is a function of bond strength and surface frictional properties.

Pore collapse is a predominant mechanism at higher densities, and was shown to

I accurately define mechanical behavior in the previous section.

For low density snow, the volumetric deformation is determiend largely

by the intergranular glide and inelastic deformation of the grains and

m necks. Under a state of hydrostatic pressure, one may expect effects due

to intergranular glide to be reduced to a minimum relative to inelastic

deformation. Due to the random nature of both grain geometry and grain-to-

I grain bonding, glide effects certainly cannot be eliminated, but it may be

reasonable to ignore them in comparison to the volumetric strains due to

plastic deformation and flow of the matrix material.
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In this section, a constitutive law for volumetric deformation of low

density snow is formulated by using a neck-growth model. In order to

account for intergranular slip effects, an empirical adjustment of the

equation is then made, and the results are then compared to existing experimental

data.

From Figure 9(a), a good idea of the grain and neck geometry can be

obtained. The grains are those structural elements which have free surfaces

which are predominantly concave inward, toward the center of the grain,

where this radius of curvature is denoted by R. Individual grains are

connected by necked-down regions whose surface are concave outward toward

the air phase in the section view shown in Figure 9(a).. This radius is

denoted by R'. The bond is the plane containing the minimum cross sectional

area of the neck. When two ice grains are brought into contact, the length

L of the neck begins to increase from its initial value of zero, since

sintering effects begin to produce the concave outward geometry of the

neck. This is illustrated in Figure 9. In many cases the length of the

neck can be quite large, particularly for low density snow in which some of

the necks have developed from the fragile needle structure of fresh snow.

If one is considering fracture strength of snow, the bonds are of

primary importance, since these are the regions of low cross sectional area

in the material. However, characterization of the deformation properties

of snow must consider the entire neck and the ice grains, since they con-

tribute to the total deformation process.

In developing the constitutive relation, inertial effects are assumed

to be negligible. The major portion of the deformation procss is assumed

to take place in the necked regions of the granular structure. The grain

bodies them selves eventually begin yielding as the pressure increases
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during the deformation process. In undistrubed snow that has had several

days to sinter at temperatures of about -5°C, the grain bonds will usually

have cross sectional radii at least 25% as large as the grain bodies themselves.

This rate of bonding depends to a large extent on the temperature and

imposed pressure. At temperatures below - 300C, snow sinters very slowly.

I In the absence of a temperature gradient, snow at -50C can be fully bonded

within one day with grain bond radii on the order of 10% of the grain body

if moderate pressures are imposed on the material.

With reference to Fig. 9, the ice grain can be divided into two regions.

IRegion I is that portion of the grain body upon which lateral surface

loading is imposed, whereas Region 2 has a load-free lateral boundary.

Region 1 does have some stress free surface since the grain bonds do not

completely envelop the surface. The material is assumed to be completely

yielded, since primary interest is in snow under large volumetric deformations.

The grain radius is R, and A is the neck radius, the bearing stress

I P (Fig. 9(b)) on the grain bond is assume to be related to the macroscopically

measured pressure, p, by

I P -- p(R/A)2  (II.D.I)

Here a is taken to be the density ratio,

= PMP (II.D.2)

w where P manddp are, respectively, the densities of the matrix material (ice)

and the porous material (snow).

3 Consider first Region 2 of the ice grain. Assuming surface tension

effects are negligible, its lateral surface is completely stress free. The

stress tensor, using a cylindrical coordinate system, has the nonzero

I stress components rr' e, and . The stress-free boundary con-

dition on the lateral surface can be used to obtain:
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a rz y zza R/9z (II.D.3)

The z and r components of the equation of equilibrium are

a"'zz/9z + (l/r)a(r Orz) /3r = 0 (II.D.4)

aarr/ir + Darz/az + (Orr -aee)/r 0 (II.D.5)

The condition of incompressibility requires that

3V /az + (i/r)D(rv )/ar = 0 II.D.6)

t where VrD vz and v0 are the velocity components in the r, z and e directions.

Integration of eq 4 and use of Leibnitz's rule and the mean value theorem

f Iresults in

F-R 2ir(DO /Dz)dr = A ao /az + (F (z,t) -O (R,z,t)) aA /Dz (II.D.7)

S I .o zz z zz zz zz "

where Fzz is the average axial stress on the cross sectional area Az at the

location z in Region 2. The following relation,

o 21r(30/zz/z)dr = AzDzz/aZ' (II.D.8)

I is approximately correct if either (C ( z,t) - a (R,z)) or 3A z is
zz Zz z

sufficiently small to make their product small in comparison with the other

j terms in eq. 7. Assuming this approximation, the z-component of the equation

of equilibrium becomes, after application of the boundary condition,

3 ozz /az + (2 zz/R) R/az z 0 (II.D.9)

Utilizing material incompressibility and the predominantly axial state of

stress, the flow law given in eq. II.A.l acquires, after some algebra, the

form

S0 ,- 2S + 2C ln ((3A/4) 3v /az)" (II.D.10)
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I
Solving for 3v /3z gives

v z(z,t)/az = (4/3A) exp (a zz/2C - S /C) (II.D.ll)

which can be shown to satisfy the equilibrium equation, eq. 9. The in-

I compressibility condition can be used to show that the rate of change of the

radial velocity vr is

5v = - (r/2) av/z (II.D.12)
r r

Setting r and v equal, respectively, to A and A in eq 12 and substitutingI r
into eq. 11 yield

n -(2A/3A) exp ( zz/2C - S /C) (II.D.13)

I Now consider the deformation in Region 1 of the ice grain. In this

region, part of the lateral surface is constrained by the bearing pressure

of adjacent grain bonds. In this case, at a neck

F = - p c(R/A)2  (II.D.14)rr

i whereas arr is zero on other parts of the lateral surface not in direct

*contact with a neck. The average stress on the lateral surface must be

reduced by a factor f, 0 < f < 1, which gives the fraction of lateral

surface in contact with a neck. Therefore the average value of arr at

r = R is

a f p a (R/A) (II.D.15)
rr

which gives the mean radial component of stress acting on the radial surface

of the grain in Region 1. The radius R is relatively constant with respect

3 to z in this region.

In what follows, the superscripts I and II are used to refer to regions

I and 2, respectively. From eq. 1 the axial component of stress, az, in

Region 1 is approximately
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These last two equations define an average stress state in Region 1.

The maximum difference value S in Region 1 is then

S a - I [(R/A)2 f-l (II.D.17)

- II f - (A/R)2
(/zz

Making use of incompressibility, the maximum difference value for the rate

of deformation tensor can be found to be

D = (II.D. 18)Ir r
Returning to the constitutive law, and then integrating this after first

substituting eqs 17,18 yield

_RR 2

exp {[(R f-i] - S /C} (II.D.19)

Equations 13 and 19 define the rate of change of the neck radius and

grain radius respectively. These must now be related to the rate of change

of the density ratio. If Vm is the volume of the solid ice phase in a cubical

region containing the grain of radius R and N necks of length L, one can show

that Vm and the volume V of the cubical region are

V (2 AR2 _ A2 + L)3 (II.D.20)

V - (4-2N)TR 2/3 + N7A2 L/2! _
+ (N7T/3) (2R 2 + A 2  2-4 2  (II.D.211

I m must be constant if the matrix material is incompressible. Utilizing this

constraint gives the following approximate relationship for the rate of change

of the bond length L,

L B IA + B R (II.D.22)
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where

- ( 2 2 2 +2)
B2  2 j(4 N)R + N(2R + A2)/3) (II.D.23)

SNA2 2

B1 - -(2/NA ) {NAL + 2NRA/3 - (2R2 + A2 ) AN/(3R)}(II.D.24)

The average number of bonds N attached to a grain varies with density

and snow type. In the absence of any substantial data on the variation of

N with density, the following approximate relation is assumed.

I N = 4 (1 + (p-0.30)/0.50) (II.D.25)

-3where p is given in Mg m . Very little data are available to verify the

f accuracy of this equation. Kry and Gubler made studies of snow structure,

but their results considered a relatively narrow density range. The density

ratio can also be expressed as the ratio V/Vm . Then, the rate of change of

a can be calculated with the use of eqs 13, 14, 20, 21, and 22. The result

of this is

1 I=A 1 exp p) + A2 exp (82p) (II.D.26)

where

= (R/A)

E [(R/A) 2 f (II.D.27)

2 22

A1 = (2KA/3A) (-2A// R2 - + B1) exp (So/C)

A2 =(KR/3A) (2R/v' R 2-A 2 + B ) exp (-S /C)
22 0

X = 3(2 /R2 -A2 + L)2/V m

Eq 26 describes a volumetric behavior for snow which functionally has the

correct form. However, acceptable accuracy cannot be expected since factors

I such as work hardening of the matrix material, effects of random grain and

neck geometry, and intergranular glide have not been accounted for. In order

to adjust this equation to better fit experimental data, the following emperical

-I
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I term is used
i C2 + C3P

F -Clp ° (a/ 0) (II.D.28)

to divide the pressure p in eq 26. A
The constitutive equation then becomes

A: exp p/F) A2 exp (a2/F) (II.D.29)

with Al.A2I  1ad2 remaining unchanged from the values given in eqs.

23, 24 and 27. In these results, all coefficients are determined by the

properties of ice and the structure of snow, except for the three constants

Cf C 2 and C3 contained in eq. 28.

I II. E COMPARISON WITH EXPERIMENTAL DATA FOR NECK GROWTH MODEL

Abele and Gow (1975,1976) have reported results of their studies on

the high rate volumetric properties of snow. Their 1976 study involved the

deformation of sifted and compacted snow, a process which resulted in

S0o-3
initial densities higher than 0.30 Mg m . Their 1975 work was concerned

with natural undisturbed snow with densities ranging from 0.1 Mg m-3 to
-3 o

0.30 Mg m and a temperature range of -30C< 0< -2*C. Their experiments

consisted of confined compression tests and have already been described in

Section II.C. The reader is referred to that section in order to familiarize

himself with the test procedures.

Several densities were considered here to demonstrate the effect of

initial density on the stress response of the snow. Generally, the average

crystal diameter was about 0.2 to 0.3 mm, althou-. this was at best an

estimate obtained from the thin sections illustrated in reports by Abele

and Gow. This snow is similar to fine grained seasonal snow. The bond

Cal radius was taken to be 0.08 0.12 m, based on thin sections illustrated

in Abele's paper.

40
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I Figure 10 illustrates a comparison of theory with the experimental

data. The term F in eqs 28 and 29 was evaluated by determining the coefficients

to fit eq 29 to the experimental data for an initial density of 0.30 Mg m-3

C1, C2 and C3 were found to be 0.112, 1.67, and 6.40, respectively. As

can be readily seen, for all densities from 0.10 Mg m"3 to 0.60 Mg m-3 the

1 agreement between theory and experiment is excellent.

Figure 11 illustrates the effect of bond size on the volumetric properties

of snow. In Figure 11, grain size is held constant while bond size is

II varied over a range characteristic of alpine snow. Figure 12 illustrates

the effect of deformation rate on the response of snow. The importance of

grainssize dn:pressure response was checked. R was varied over an order of

fmagnitude while the ratio A/R was kept constant, and the pressure response
was found to vary by less than a percentage point, so that one may conclude

i that grain size is a second order effect.

II.F SIMPLIFIED EQUATION FOR NECK GROWTH MODEL

[ Equations 13 and 19 can be used to calculate A and R during volumetric

I compaction. This was done for the range of initial densities and deformation

rates illustrated in Figures 10, 11 and 12, and R was found to be at least

two orders of magnitude less than A. This is due to the fact that the

grains have a high degree of lateral constraint, whereas the grain bonds

I are essentially unrestrained. This result allows the constitutive equation

3 to be simplified by neglecting the term B2 exp (a2Fp). The resulting simplified

constitutive law becomes

A 1
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and this equation is more readily inverted to obtain p as a function of

ci and . This equation gives results virtually identical to the results

illustrated in Figures 10 - 12.

The above constitutive equation is considered to be valid for quazi- 4
static rates of loading. When very large rates, such as those associated

with stress waves are incurred, intergranular dynamical effects such as those

derived in the pore collapse model should be included. This results with

I the following constitutive law.

2
P ln (a/A1 ) + 1 2F

p 1 1 ci dci

In summary, a rate sensitive volumetric constitutive law based on
grain and grain bond deformation has been developed and compared with

experimental data. As can be seen in the above, the developed law does

accurately describe the behavior of snow for a given deformation rate and

for a range of initial densities. Aside from the rheological properties of

the matrix material, one of the most important parameters is the ratio A/R

of the bond and grain radii in the undeformed snow. However, the importance

of this parameter becomes less significant as volumetric strains become

large. This can be better understood by first considering Figure 13, which

shows the variation of the neck radius as a function of density for two

different intial neck radii. It can be seen that the relative differences

in bond radii decrease during the compaction process. The smaller bonds

experience a larger stress and hence flow more readily than the large

bonds, thereby growing at a faster rate.

The constitutive law was found to lose accuracy at the higher pressures

where the theoretical curves are terminated in Figure 10. For all four

cases shown in Figure 10, this occurred when the bond radius was about three

fourths the value of the grain radius. At this point, tho• adjacent bonds
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I
on an ice grain begin to interact in a significant degree as they grow into

each other. The kinematic equations, eq 22 - 27, do not account for this,

and this may be part of the reason for the loss of accuracy at the higher

1 densities.

The neck growth model used in this study could be applied to other

materials such as porous metals, although the constitutive law for the

matrix material would be different than the one used here. However, the

kinematical description used here should be readily adaptable to other

porous materials.
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I

III APPLICATION TO THE PROBLEM OF VEHICLE MOBILITY

I III.A INTRODUCTORY REMARKS

The problem of oversnow mobility can generally be divided into two

different but related topics: (1) power requirements for motion in snow

and (2) traction requirements. The latter problem has probably received

i more attention, since sufficient traction and drawbar pull capability must

be developed before any forward motion is possible. In addition the problem

of traction capability is somewhat simpler to define mathematically, at

I least in the manner that this problem has been previously treated (Mellor

1963). This is not meant to imply that the problem of traction capability

i is a simple problem, since the stress state in the immediate vicinity of

the track grousers is quite complex. Previous studies have avoided a

detailed stress analysis by calculating averaged shear stress capability of

the snow at the track-snow interface. A relation similar to the Coulomb-

Mohr criterion is used to find the shear stress in terms of the track

Ipressure, and by application of equilibrium, the tractive capability of the
SI vehicle can be found. This approach has met with some success as indicated

by Mellor (1963). In addition, Harrison (1956, 1975) has utilized a method

used for soils to predict drawbar pull capability, but he has pointed out

some shortcomings of this method.

The problem of calculation of vehicle power requirements has however

not been studied as extensively as the second problem. A very relevant

reason for this is that there has not existed a theory for accurately,

defining the volumetric properties of snow under finite, high rate com-

paction processes. This difficulty has in part been relieved by the development

I of volumetric constitutive laws such as presented in Section II, where it

jf Iwas shown to accurately predict the response of medium-to-high density snow
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I
to large amplitude high rate volumetric deformations.

In the case of a shallow snowpack, the pressure bulb, which is the

I region of compacted snow directly beneath the vehicle track, extends to the

ground. This enables the relatively rigid ground to lend a significant

amount of support to the vehicle. If the snowpack is quite shallow, the

I effects of the shear stress on the sides of the pressure bulb may be neglected.

The pressure inside the bulb does not consequently vary signficantly in the

vertical direction, thereby allowing the rather easy calculation of power

requirements for tracked vehicles in snow.

In the case of deep snowpack, the pressure bulb receives no support

I fom the ground, and the bulb must be supported primarily by the shear

stresses existing on the bulb wall. As a consequence the pressure bulb can

extend a significant distance into the snowpack before an equilibrated

state is reached. Due to the effects of the shear on the bulb walls, the

pressure and the density distribution in the wall is no longer uniform.

The constitutive law in eq II.B.47 is used to estimate energy and

power requirements for over-snow tracked vehicles. Since high rates and

I large amounts of compaction are involved, constitutive equations developed

by other researchers are generally not valid for this case. Mellor (1974,

1977) gives a thorough review of previous constitutive formulations for

* snow, and one can readily see that most previous work is valid for either

small strains or rates well below those that can be generated by tracked

I vehicles in motion. The following analysis, therefore, represents one of

the first attempts to analytically calcualte power requirements for tracked

vehicles which generate large amounts of compaction of snow. The comparatively

simple problem of shallow snowpack is first studied, and then deep snowpack

mobility is considered in the following section.
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I I
III.B TRACKED VEHICLE MOBILITY IN SHALLOW SNOWPACK OF MEDIUM DENSITY

Harrison* (private communication) has indicated that the cross section

I of the failure zone below a vehicle track takes on a somewhat rectangular

Ishape. Figure 14 gives a schematic of the failure region, often referred to
as the pressure bulb. It is assumed that shear failure occurs along the

I sides of the failure region, and that the material directly below the

vehicle track undergoes unidirectional compaction. Outside the pressure

I bulb, the snow undergoes very little compaction so that the energy dissipated

would be negligible when compared to the dissipation occurring within the

pressure bulb. The depth of the failure region depends on the shear strength

of the snow, and some of the energy dissipation is invariably due to deviatoric

deformations. However, when one considers the massive amount of compaction

occurring within the pressure bulb, neglecting deviatoric energy dissipation
.4

becomes a valid simplifying approximation. There are conditions under

which such an assumption may not be reasonable. Th~s would include situationsA of slippage or vehicle turning. But if a vehizle is moving along a straight

path and is not experiencing much slipping, the above approximation should

be valid. At any rate, the results should give a reasonable lower bound on

vehicle power requirements and allow for a good parametric study of the

problem. The following analysis would be particularly valid in the case of

I shallow snow in which the pressure bulb extends to the ground.

The constitutive equation as given by eq II.B.47 can be used to calculate

directly the energy a vehicle expends in compacting snow during its passage.

Stress power is given by

1tr(T * D) (III.B.1)IP
p -I

*Research Engineer, U.S. Army Cold Regions Research and Engineering

Laboratory, Hanover, New Hampshire 03755.
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where T and D are, respectively, the Cauchy stress tensor and the rate of

deformation tensor. tr(.) is the trace of the tensor quantity inside the

parenthesis. The stress power, W, is simply the rate, per unit mass, at

which work is being done internally by the stresses. 0 is a central part

Iof the first and second laws of thermodynamics. For a purely viscous

material under isothermal conditions, W would reduce to the rate of energy

disspiation. For a viscoelastic material, the stress power would contribute

to both the rate of change of strain energy and to the rate of energy

dissipation.

In case of a undirectional deformation, the stress power associated

with compaction is:

p x (III.B. 2) i
P ax

where p is the hydrostatic pressure, v is vertical particle velocity, and x

is the vertical coordinate position of the particle during deformation.

The continuity equation for unidirectional motion isI
dp + v (III.B.3)

Eqs. II.B.47, 2 and 3 can then be used to obtain

W -p (III.B.4)

Integration of eq 4 results with

1 W = E-t &_ dt (III.B.5)

In the above the pressure p is a function of time. Eq II.B.47 may be in-

verted to yield

Q(t,' i (III.B.6)
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I where

I Q(t,t) = (F(t,a) + ln[a(c-1)]] -nA (III.B.7)

F [ t e /  - 2(S 0 -C)] (III.B.8)

gThe pressure loading in the material below the track is assumed to

have-the form

)p t) =p* t (1 - H(t-t )] + P*H(t-to) (III.B.9)

Ut 00 0

where H(t) is the Heavyside step function. Figure 14 shows the nature of the

i pressure distribution under the track. The total work done by the track to

a unit mass of snow is then f

i *o-P p(t) et'Xd (III.B.10),

where t* is the duration of time that the snow is under the track. Eqs.

I 7 to 10 can then be used to study the energetics of oversnow vehicle travel.

The above results have been used to make such a study. By substituting

the assumed pressure function given by eq 9 into eq 10 and integrating eq 10

over the time t* corresponding to the interval that an element of snow is

under the vehicle track, the actual work in compressing a unit volume of

U undeformed snow is found. This gives a direct measure of track efficiency

for a given set of parameters such as vehicle speed, track pressure, track

geometry, and snow properties.

Eq 2 gives the instantaneous power/unit mass of snow while the material

is under the track, and this expression can vary considerably during the

interval, t*, of track loading. For the purpose of this study, the average

power is more meaningful, and this is calculated by simply dividing the total

work per unit mass, W, by the time period, t*, required to produce this work.
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Therefore, e(tIa)
1_, ft* P(t) a t{I..1

dt

0

I gives the power per unit mass is subsequently refrred to as "specific power".

The specific power, P, would have to be augmented by a factor equal to the

' total mass of snow under the tracks, if one wanted to find the total power

I requirements.

-Nominally, a track length of 5 meters was chosen. Track pressure was

4 -2
limited to 5xl0 N-m- , which admittedly is uncharacteristically low when

considering military vehicles. However, such pressures are more realistic

for vehicles such as snowmobiles. Initial snow densities studied range

from 300 K*j-m -3 to 700 Kg-m - 3, and vehicle speeds are restricted to about A

15 m-sec

Figures 15 and 16 compare specific power requirements for two track

loadings, and a significant difference is generated when one increases the

I4 -2 4 -2
track loading from lxlO N-m-  to 5xlO N-m- . In particular, the efficiency

of the lower track pressure becomes increasingly apparent at higher vehicle

speeds. This is due to decreasing amount of snow compaction that occurs

while the snow is under the track as the speed increases. At the lower

track loading there appears to exist a critical speed above which little

I increase in efficiency is achieved with higher speeds. For the higher

pressure, significant amounts of compaction continue to occur at the higher

vehicle speeds. These high pressures, even at high speeds, forces the

i vehicle a significant distance down into the snowpack, thereby expending

much energy in snow compaction. At lower track pressures, the compaction

m becomes much less significant, and the vehicle tends to "ride-up" on the

l which is a much more efficient configuration. The relationship between the

pressure and deformation is a highly nonlinear one, as evidenced by vq.
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II.B.47. As a consequence, one can expect a nonlinear relationship between

specific power and vehicle speed. .Sk

Notice the tremendous increase in power when the track pressure is

4 -2 4 -2
increased from lxlO N-m to Sx10 N-m . Again, this can be attributed

to the highly nonlinear relationship between p, a, and a in the constitutive

*equation.

Figures 17 and 18 illustrate the variation of vehicle power with

initial snow density. in these figures the relationship between specific

power and density is illustrated for three different vehicle velocities.

* As can readily be seen, for snow with initial densities above 300 Kg-m , a

track loading of 104 N-m 3 operates fairly efficiently. However, the same

4 -2cannot be said for a track loading of 5x10 N-m, where good efficiencies

3 are not achieved until an initial snow density of about 500 Kg-m -3 is

reached.

The foregoing calculations indicate that much can be done in an analytical

manner to make parametric studies of over-snow mobility. The study given

here considered only volumetric effects, and as such would represent a

I lower bound on total energy levels absorbed by the snow when compressed by

vehicle tracks. However, this estimation should be good if slipping is not

I significant. Central to such an analytical study is the availability of a

constitutive equation which can accurately represent the material response

to large compactions at high rates.

The results of the computations illustrated in the figures show an

intricate relationship between the rate at which energy is absorbed by the

I sow and such parameters as track pressure, vehicle speed, and initial snow

density. Decreasing the track pressure substantially reduces the snow

density required to allow the vehicle to move efficiently through snow.
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The same results are implied for the speed required to allow the vehicle to

begin to plane out onto the surface, thereby resulting with less compaction r

of snow. The figures show a highly nonlinear relationship between these

parameters and the power dissipation. These figures also indicate there -

exists critical combinations of snow density, track loading, and vehicle
]I

speed which allow efficient travel over snow.

--The calculations were made by assuming a uniform compaction of the

snow directly below the vehicle track, and as a consequence these calculations

would be particularly accurate for shallow snowpack, in which pressure

bulb reaches the ground. For deep snowpack, compaction within the pressure

I bulb would not be as uniform, and the results would have to be interpreted

in terms of the averaged pressure within the pressure bulb. However,

without knowing the shear strength of the snow along the sides of the

pressure bulb, these calculations would be difficult to arrive at.

Presently, the author is working on a more comprehensive constitutive

law for snow, which, when completed, should provide a more complete description

of the high strain rate properties of snow. In addition to the formulation

of a more comprehensive constitutive law, much more experimental data is

needed so that the variation of snow properties with snow type can be

determined. Density alone is not a sufficient parameter for doing this,

3 and in-depth studies are needed to determine those structural parameters of

snow which, in conjunction with density, can be used to accurately evaluate

the material coefficients to make calculations such as done here more

accurate. When a set of constitutive equations, such as the one presented

I here, are available for a wide range of snow densities and snow-types

detailed studies can then be made on vehicle performance in snow for a wide

range of conditions. Such studies can form guidelines for track design.
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III.C TRACKED-VEHICLE MOBILITY IN DEEP SNOWPACK OF MEDIUM DENSITY

In this section, we assume the snowpack is so deep that the pressure

bulb does not extend to the ground. In this case, the pressure bulb must

be supported by the surrounding snowpack. This is done by means of shear

stresses along the bulb walls and a normal stress along the bottom of the

I bulb.

-Studies by Harrison (1975) have indicated that in deep snowpack the

pressure bulb is usually very close to a rectangular shape. There is some

spreading of the bulb below the track, but this is usually not very significant.

I Figure 19 shows schematically a typical shape. Often local inhomogeneous

conditions or vehicle turning can cause the vehicle to significantly alter

the bulb shape. However, if the vehicle is moving in a straight line, the

bulb geometry depicted in Figure 19a is realistic.

Now idealize the bulb as shown in Figure 19b. The hydrostatic pressure,

p in the bulb is assumed to be a function of Y and t, where Y is the verti-

cal Lagrangian coordinate of a particle which eventually is contained in

the pressure bulb at deformed position y and time t. The shear stresses

I along the wall and in the pressure bulb is simply the critical pressure pc

required to initiate inelastic compaction of the snow. Not shown at the

lower surface is a shear stress component, which must be zero at the center

of the bottom surface and which grows as the two lower corners are approached.

This shear stress is felt to partly restrain the pressure bulb from spreading,

I since it must act inward toward the centerline of the bulb.

We consider now the Lagrangrian forms of the equilibrium equation and

the continuity equation. The equilibrium equation and continuity equations

* are respectively
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* . . . . i n .i

T~

aT+ aT 0

3Y aZ

dt III.C.2) A

I iF
T and T are respectively the normal and shear components of the
yy zy

Piola stress tensor T. The Piola stress tensor is related to the more

familiar Cauchy stress tensor, T, by the equation

T = o F-1 . T (III.C.3)
~ . p ~

0P is the initial density of snow, and F
1 is the inverse of the deforma-

* tion gradient tensor. Utilizing eqs 3 and 1 and taking advantage of the

uniformity of the deformation in the Z-direction results with the following

I reduced form of the equilibrium equation:

0 (III.C.4)

where w is the width of the track, and T is shear stress on the bulb wall.

Integration of the above gives

p(Y,t) = - jJ a TdY' + p(O,t) (III.C.5)
P m o

where p(O,t) is the pressure produced by the surface loading.

Eq II.B.47 can be inverted to give

a ot Q(t', P, a) (III.c.6)
=- e dt' + a

where

[F(t, a) + ln(a(a-l))] - ln A (III.C.7)

F(t, a) 3ae p XpCy, t)/(Jln a-I C (-l-)) -2 (So-C) I (II.c.8)
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Equations 5 and 6 can be solved simultaneously to yield the variation of ax

under the track. In order to solve these equations the shear stress T must be

lJ found. In his earlier study, Mellor (1963) has studied the shear strength of

snow and have shown that under sufficiently high rates, the shear stress of snow r
l is weakly rate dependent but depends strongly on the hydrostatic pressure. In

view of these results, the following form is adopted for T.

T =T + K p (III.C.9)

Under relatively high pressures, the portion K p can be significantly larger

I than Top so that T can be neglected. The pressure variation then becomes

2 P K fY ft Q( ' t')
p(Y, t)0 + w f f e dt' p(Y', t)dY' + p(0,t) (III.C.10)

m
K is actually a function of the velocity of the particles on the bulb wall,

but here it will be assumed constant, since the rate dependence of K is

not well defined.

The continuity equation can be put in the form

Idet F det0 0y (III.C.11)
0 001

Integration of this results with

Y -yo= fo- )dY (III.C.12)a

y O is simply the depth of the rut formed by the tracks, since this is the

deformed position of the top surface Y = 0. At the bottom of the pressure

l bulb, y = Y, since there is no significant displacement at that point.

i Therefore, if we denote YB as the position of the bottom of the pressure bulb,
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eq 12 gives

0l - ) dY (III.C.3)I0
For a given problem, eqs 6 - 13 can be solved numerically when appropriate

boundary and initial conditions are specified. Assuming p (0,t) is

known, eq II.B.48 is first evaluated at t=0 to find pc' the critical

yield pressure. Eq 10 then is integrated to determine the value of Y =

Y at which p pc Eq. II.B.47 is then used to find a for 0<Y<_

Then the problem is step forward integrated in time by some small time

increment At, and the procedure is repeated. Doing this for the complete *

time period of track loading gives a numerical solution defining sinkage,

energy consumed, a, and stress distribution and bulb depth.

j The work done to the snow can easily be found by calculating the work

expended by the surface pressure in compacting the snow. At the upper

I surface, the work is given by the expression

I dW = p(0,t)dy(O,t) (III.C.14)

The work rate is then

d-W = p(l t) ! t (Ot) (III.C.15)

n This is the work rate/unit time per unit track area. Consequently the total

vehicle power expended in compacting the snow is

I AT ( t* 0 (0,t) dt
P = - p(0,t) dt (III.C.16)

n where AT is the area of the vehicle track and t* is the time that the snow

is under the vehicle track. This power term includes the work dissipated

due to shear losses along the bulb wall as well as the energy dissipated L

II compaction of the snow in the bulb. Not reflected would be energy expended

due to track slippage and the dissipation of energy associated with the
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large deviatoric deformations in the immediate vicinity of the track grousers.

Idealize now the track pressure by the distribution shown in Figure

I 20b. The pressure is assumed to build up linearly to a constant peak pressure

p*. This variation is given by the equation A

P(0,t) = 0 t < t*

m t
p(0,t) = t 1-H (tto)] + P*Hltt ), 0< t < t* (III.C.17)

0 0 0

H(t) is the Heavyside step function, and t is the entry time, i.e. the time3 0
increment that the surface snow is in contact with the front part of the track.

t is determined by the vehicle sinkage and speed. Figure 20b illustrates the
0

temporal variation of p(0,t). Generally the track pressure has a periodic

variation determined by the spacing and size of the track wheels. For

wheels with a moderate or small spacing, this periodic fluctuation may be

Ineglected.
The track grousers also generate stress concentrations within the

snowpack in a localized region near the surface. This region will have a

very complicated stress state which involves both large normal stresses and

large deviatoric stresses. In this zone, a significant amount of energy is

dissipated by both shearing and compaction, and the exact nature of the

l deformation within this area would be determined by grouser size, geometry

and spacing as well as the amount of slippage and nominal track pressure.

i The analysis made in this section does not have the capability of

calculating the energy absorbed in this zone within the localized effect of

the track grousers. Here we find the energy absorbed through compaction of

the snow in the pressure bulb and the shearing deformation within the

pressure bulb and along the bulb walls. As a consequence these calculations

provide a lower bound on the total energy absorbed by the snow. In the

absence of vehicle slipping, the shear zone in the grouser region may be

neglected in comparison to the much larger pressure bulb.
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.Ai-; Lt c k *1 ,! )!-ItAI:,, ; an'i v'.:, 1c ,. i';i~i t~- n :1; h, ct t 1(uI IjO c t ionfs

Iti no of L ha, rI I M5icatA4 hii jh- sp ed t rac tor . iiThis vel-IcI 01 i';as

~,r ~i o 11 y*osSa nd fr t:raispor tin,, ptrsornva I and liy4ht cargo ov,-r so(-ft

* rr. . The M')A4 hias a "V) liorsopower (ja so incon riot'i chs about,4

I~~- V ii v a rack .Iun'1jtbh ot L1ut 3.U k' me tiers and a track widt h,

31, ll- Letir;; nominial trac-k prtcasure vaiie; from i. 43 btar up.ward,

li* -d :1. ( it t. '- lO -.onsequen t-l the M5A4 does not have (:ocd capai.:1 ity

'.1'1 t Ino; l-nacsonl ~iwj ~ Jo t s; il,-avu a ruuL;3jnabloe% I~i'I,1: I i t.'

I; rzivii cSi 1 ;oac uch as on the QGree n.Land ic(ocai - or on 3, -ium I' n

I~, -'niI:;''. '-r,i I y~ th'ls ' d(,ri:ni t i1It Ar' in excess of 31ou- Kg-;:

lur 27, n'i::iniar 1 Ze tu' ,' - It-- of tnh-j ati udtV The- r e su It:s a!

1 II,.:;. n Am: of l;O'~''j~'.'Ct , s act: tis 3 U'. mos-t.rconhb.iito

C War . 'lb' Lrack vr'vi-' usdrdwt,'rc fur Lti ost part Iar,;,t Lhin

............... 'br, 1.ofor ]-u-u-ig nsi ty .;now, tra.ck rsur buow~ U..!

;r.: :.Li! with1 i:1tinii (Irit o;n':rqjy luvels consumed ini tho rosn buol).

a s;IJ J anld 22 1 i'loix atio the very at ronq deperld';ncr- of en-Ijy

I '-OnslimnIt ici. on initial dens ity and nominal track pressure. F'or instance by

i''ly incretasing the pressure from 0.3 bars to U.9 bt:ars, an increase of an

rde~r of maqnitude in energy consumptin results for snow with A density of
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I 300 Kg-m Conversely snow with an initial density of 500 Kg-rn consumes

only about 10% as much energy as snow with an initial density of 300 Kg-m

3 as shown in Figure 5. As indicated by Brown (1978b) and evidenced in

I iFigure 22, for a given pressure P*, there exists a critical density above

which very little compaction and energy consumption takes place. Figure 22

i shows that for a density above 450 Kg-m - 3 a track pressure of 0.6 bar

produces very little compaction.

Figure 23 demonstrates the effect of track geometry on track efficiency.

The M5A4 has a length-width ratio of about 10, but Figure 23 shows how

energy consumption would vary for a L/w variation from 2 up to 10. This

I figure shows the obvious advantage of a long narrow track. The reason for

this dependence lies in part with the role that the shear stress plays in

supporting the pressure bulb. One can readily see by Figure 19 that for a

wide track, the pressure bulb would have to be deeper in order for the wall

shear stresses to support the bulb. This can also be seen by noting eq 4Kin which the track width w inversely affects the pressure gradient in the
bulb. An increased w decreases Dp/ay, thereby increasing the depth to

which the bulb penetrates before the bulb pressure decreases to the critical

i yield pressure pc"

Figure 24 shows the variation of bulb depth with track pressure for

three initial snow densities. As should be expected, bulb depth decreases

with decreasing pressure and increasing density. The variation of bulb

depth with track length-width ratio is illustrated in Figure 25, and Figure

3 26 gives the vertical variation of bulb pressure for one particular case.

As can be seen, the dpeth is critically dependent on the value of pc, the

yield pressure given by eq. II.B.48. Over the bottom 0.4 meters of the

bulb, the pressure p goes through a relatively small variation, so changing
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7

IPC by 50 to 100% could case a significant change in the bulb depth. This,

however would not affect power consumption much, since most of the energy

i is consumed in the upper portion of the bulb.

Finally, Figure 27 shows the compactive force generated by the motion

of the vehicle in the snow. This was obtained by integrating the horizontal

component of the track pressure over the track area. Note here the improvement

of track efficiency with vehicle speed.

I The results of this study show that the method described here has the

i potential of predicting power requirements of oversnow vehicles for a wide

range of conditions. For example the formulation developed here enables e

one to make a parametric study of the effect of a large number of factors

on energy consumption rate. This includes such factors as nominal track

pressure, length-width ratio, snow properties, angle of attack, etc.

Therefore this formulation could be of some use as an analysis and design

tool.

The calculations used in the example were for snow with a uniform

density and a track which develops a uniform track pressure. Such an

I assumption is not necessary, and a stratified snowpack and nonconstant

I track pressure could have been used. However, to demonstrate the formulation,

the simpler problem was considered here.

* 1 Presently there is not much data available for comparison with the

example given here. Harrison (1975) has detailed results for several

i vehicles in seasonal snowpack in which th snow density in the upper 50 cm-3

were less than 300 Kg-m , which makes direct comparison with the example

given here difficult. The constitutive law given in eq II.B.47 is not

considered to be accurate for densities less than 300 Kg-m -3
, so cons-

equently an example for lower density snow was not possible.
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IThe general behavior of the results demonstrated in Figures 21-27
agree with what has been observed in field studies reported by Harrison

1(1975). Whether or not there is a good quantitative agreement will be
determined when either new field data is available or when the model developed

*here has been generalized to include conditions of lower density snow.

I What has been demonstrated, however, is the apparent usefulness of this

model for design and analysis purposes.

III.D VEHICLE PERFORMANCE UNDER DIFFERENT SNOWPACK CONDITIONS.

I In the previous two sections, vehicle performance was evaluated for

dry snowpack with densities greater than 300 Kg m- 3 . The pore collapse

equation was used for these calculations, since it is valid for this type

of snow and is relatively easy to use.

In this section the neck growth model is used. This allows an evalua-

tion of vehicle performance in low density snow as well as higher density

snow. In addition, since grain size and bond diameter can be varied, the

I effects of snow type can be studied.

i Normally a vehicle will have to be operated under a variety of snow-

pack conditions. For instance during mid winter, operation on low density

dry snowpack may be required, whereas during the spring, unsaturated wet

snow will be incurred. It would be useful to be able to predict how much

I variations in snowpack conditions affect vehicle performance.

Recently Abele (1981) has investigated the volumetric properties of

wet snow. Of particular interest is his work on unsaturated snow (free

I water content less than 8% by volume). A volumetric constitutive law for

this snow (Brown, unpublished) has been developed and could be used in a

I number of problems of interest. This constitutive equation has a form

similar to the por,! collapse model developed earlier, i.e.
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S[2(So -C) + C in (ii-I P 3 "[L'_ [) (III. D. 1)

which is essentially the same equation as was used to describe the behavior of

3 high density snow (Brown, 1979). Abele (1980) indicates that wet snow is somewhat

more rate dependent than dry snow, and that the material is somewhat softer

than dry snow at the same density. Also the work hardening term 0 was

3 found to be dependent on the free water content. Utilizing Abele's experimental

results, eq 11 was used to approximate the properties of wet snow with

essentially no free water and wet snow with 7% free water by weight. It

should be noted that to date, Abele's data is the only high rate test data

I for wet snow, so the constitutive equation given by eq 11 cannot be expected

to be extremely accurate. There just is not yet enough data to thoroughly

verify the accuracy of any equation. However, the results found here for

wet snow should give a good qualitative evaluation of mobility in wet snow.

A procedure essentially the same as used in the earlier two sections

Ican be used to analyze vehicle performance, so only the results are given
here. The same track loading is assumed here as was assumed in Section

III.C.

IFor dry snow, a range of densities from 200 Kg m - 3 to 500 Kg m -3 were

-1 -i
evaluated for speeds ranging from 1 ms to 10 ms . Also the effect of

track pressure on vehicle power requirements was also investigated. These

3 results are all illustrated in Figures 28-32. The unit of power used here

is horsepower as it is more familiar to people. Figure 31 illustrates the

effect of snow type on vehicle performance in snow. Plotted in that figure

is the variation of vehicle horsepower with the ratio 6/R. For well sintered

mid-season snowpack, the mean radius, r, is on the order of 0.1 mm, whereas

A may average as large as 0.04 mm. However, snow which has been under

lemperature gradient effects will metamorphose until the grain size R may

l be as large as 2 mm.
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I A relative comparison of vehicle power requirements in wet snow and

dry snow is illustrated in Figure 32 where results are shown for wet snow

I -3with 0% free water and 7% free water. A density of 400 Kg m- was chosen

since late season wet snow usually has a density in excess of 400 Kg m
3

For the wet snow, eq 1 was used in evaluating the vehicle performance.

Figure 28 shows the dramatic increase in energy requirements with

decreasing snowpack density. The sinkage increases significantly, and this

* additional sinkage increases the thrust required to push the snow just

ahead of the track downward and forward as the track passes over the snowpack.

Comparisons in Figure 28 are for two vehicle speeds while such parameters

as intergranular bonding were kept constant.

one additional point should be made here. As rut depth increases, the

forward thrust applied by the tracks also must increase. This results with

an increased shearing force applied to the snowpack in a direction parallel

to the direction of vehicle travel. This increased shearing force results

with additional horsepower consumption within the snowpack and would have

to be added to the numbers arrived at here since shearing effects were not

I included in the analysis. Consequently, the solution found here should

represent a lower bound on the actual energy consumed within the snowpack.

Studies with W. Harrison of the U. S. Army Cold Regions Research and

Engineering Laboratory show that shearing effects are not significant as

long as the vehicle is not experiencing slippage.

.lFigureS29 and 30 show that power consumption increases rapidly with.

track pressure but that when a critical vehicle speed is reached, vehicle

travel becomes relatively efficient. This critical speed depends on snowpack

m density, track pressure and intergranular bonding.
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Finally the variation of vehicle power required for travel in temperature

gradient snow increases dramatically as the temperature gradient effects

become more significant. Mid season equi-temperature snow is the pre-

idominant snow type for normal snowpack. For instance in a two meter deep

snowpack, a full .5 meters may consist of this snow type. Grain size is

normally 0.1 - 0.3 mm in diameter, and intergranular bonding is well estab-

lished, the ratio A/R often being on the order of 0.3 to 0.5. However,

under the influence of a temperature gradient, grain size increases. This

rate of increase depends on temperature, so that the metamorphism proceeds

most quickly near the bottom of the snowpack where the temperatures are

i normally above -50 C. Quite often in a one meter early season snowpack

which experiences a cold period, the entire snowpack can show these tempera-

ture gradient effects. It is certainly possible that the ratio A/R could

3 decrease to values less than 0.1 to produce very weak, collapsing snowpack.

Future work needs to be directed at the more difficult problem of

3 energy consumption when vehicle slippage occurs during travel. Current

finite element and finite difference methods may be used to solve this

problem if the relevant material properties of the snowpack are known.

3 Unforbnately these material properties are still not available. Brown

(1981) has used a nonlinear constitutive relation to model sinkage of

3 building foundations into snow. This constitutive equation has the form

T=2n C ) - 2n tr(C- E) C- (III.D.2)
3 -- I

PO

-- p (ax,&) c-

where C-1 is the inverse if the deformation tensor, E is the Lagrangian strain

I 
L?

tensor, T is the second Piola stress tensor, and n is a viscosity coefficient

I
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jwhich is density dependent. The pressure term is a function of a and

and is given by eq II.B.47. For the settlement problem, this formulation

1~ -1
. was found to work well. Generally strain rates less than 10 s were

incurred in the problem. Whether or not it would work at all well for

, higher strain rates associated with vehicle mobility has not been determined.

I Also the constitutive equation is somewhat complicated, and it should be

possible to formulate a simpler constitutive equation for the vehicle

mobility problem. At any rate, if an accurate representation of the deformation

- in the bulb below the track is to be determined for conditions where vehicle

slippage is occurring, a more general equation than used in this paper is

needed. Assuming an acceptable constitutive relation for snow can be

found, solution procedures similar to that of Yong et al (1978) can be

performed. Yong's work to date represents the best numerical work on this

type of problem. Their approach would have to be modified to account for

large snowpack strains and somewhat more complicated material properties,

but their finite element approach should give useable results.
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K IV APPLICATION TO SHOCKtJAVE PROPAGATION

IV.A INTRODUCTORY REMARKS

Stress waves in snow are a problem that has not been studied as extensively

as other subjects. Practically all of the previous work on the mechanical

properties of snow has been restricted to quasi-static conditions in whichI
inertial effects are negligible. Napadensky (1964) first investigated the

dynamic properties of snow under the effects of shock waves. More recently,I!
Johnson (1978) considered in detail the propagation of elastic sonic waves

f in snow. Wakahama and Sato (1977) Wisotski and Snyder (1964), and Gubler

(1977) all conducted experimental investigations of stress waves in snow.

Mellor (1977) reviewed previous work on shock waves in snow, as did Johnson

(1978). But to date virtually no work performed has utilized a material

constitutive equation to investigate the propagation of inelastic stress

Ii waves in snow. This is not surprising, since a valid constitutive law for

snow has been lacking, and consequently previous studies have been restrictedIJ
to the use of mass and momentum balance principles. However, o.-ce a constitutive

law is found to accurately describe the behavior of snow under rates of

loading characteristics of stress waves, a much more detailed analysis of

stress waves can be made.

A number of problems require a detailed knowledge of the response of

snow to shock waves. The relative effectiveness of in-snow and airborne

j explosives for initiating avalanches is one such example. To date the

relative effectiveness of explosives detonated in the air, or in snowpack,

or on the ground has not been determined. Avalanche experts still do not

agree on optimum explosive speed or charge size. Another case in which

stress waves are generated is projectile impact. A related problem is

avalanche impact on structures. In all of these problems, solution of the
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I usual balance principles can yield some information; but without an appropriate

I constitutive law, such questions concerning stress wave attenuation or

alteration of stress wave profile cannot be answered.

At this point some definitions are in order. An elastic-wave is one

to the stress wave, and no attenuation can be attributed to inelastic

deformation of the material. A plastic wave is one in which material

yielding and viscous flow occur. This is often referred to as a nonlinear

wave. This is an inexact definition, however, since material nonlinearityI!
can occur in the absence of material yielding and plastic flow. However,

since at high deformation rates snow remains practically linear up to the

point where yielding begins, any differentiation between plastic waves and

nonlinear waves is meaningless.

In stress waves, the jump in a variable (such as strain, pressure, and

energy) is defined as the difference between the values of the variable

just in front of and behind the wave front. Much of the previous analytical

work on stress waves has been restricted to the determination of these

jumps. A shock wave is a wave in which the displacement of a particle is

continuous across a wave front but in which the particle velocity experiences

a jump. An acceleration wave is one in which the particle velocity and

displacement are continuous across a wave front, but in which the accelera-

tion has a jump across the wave. The surface representing a wave front is

often referred to as a singular surface, since discontinuities in acceleration

I and/or velocity can occur at this surface.

A steady wave is defined here as one in which the wave speed propagates

at a constant speed V. One can show that the wave amplitude remains constant

for such a wave. Even in plastic waves such a condition can be established,

89________- iW., - 9-



although generally this condition is short-lived. Steady waves have been

I studied extensively since they are mathematically easy to investigate.

Nonsteady waves are simply those waves that lack the characteristics ofIL
* steady waves; i.e., their amplitudes may either grow or attenuate.

IV.B GOVERNING EQUATIONS FOR PLANE SHOCKWAVES

In the following sections, differentiation of the constitutive law will be

I necessary. This can be done in terms of the moduli:

ET -a (aac) (IV.B.)

I 1 - (Iv.B.2)

E =(IV.B.3)

21I
ET , El, and E2 are, respectively, the tangent, rate, and acceleration moduli.

The derivatives 3p/DX and dp/dt then can be shown to have the forms:

IX -T X X(VB4
I

I=-E T+EI+C (IV.B.5)dt a1 2

where X is a coordinate variable.

Consider now balance laws for stress waves. We use here strictly a

mechanical theory and do not study restrictions invoked by the energy law

II or the second law of thermodynamics. The two laws we consider are those of

mass balance and momentum balance.

The momentum balance for a plane wave propagating in the X direction

requires

!90
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Ix +

-nx 0___a
"J + Oo bo = 

0o t (Iv.B.6)

* where b0 is the body force acting in the X direction and V is the particle velocity.

If the state of stress is dominated by the pressure p, and if body forces are

negligible, eq 6 can be reduced to:

x=0 - (IV.B.7)
-x 0 at

I The mass balance equation (or continuity equation) is

P a + av 0 (IV.B.8)

Since t = pm p = 00/p, we can get

a -1 at (IV.B.9)

as the form of the mass balance equation which is used later.

Consider a one-dimensional stress wave propagating through a medium

such as snow. We define as a wave (or wave front) a smooth one-parameter

Ifamily of points Y(t), -,< t< 0, such that Y (t) gives the material point

(or particle X) at which the wave is located at time t. X is the position

of a particle in the reference configuration, which here will be the un-

deformed configuration. x = x(X,t) is the position of a particle X at time

t and is therefore the deformed position. The intrinsic velocity of the

wave is

V d d Y(t) (IV.B.10)
=dt Yt

which is the velocity of propagation relative to the undeformed position of
I the body.
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ILet f be any variable, say density or stress. Assume f(X,t) is a

5 function of position X and time t and is of class C2 in X and t except at X

= Y, where f has a jump on discontinuity; i.e., the values of f just in

front of and behind the wave front (X = Y) have different values. We

denote this jump by the expression [ff, or

S[ff = ff (IV.B.ll)

where

f = lim f(Xt)

I X - Y (IV.B.12)

X< Y

f+ = lim f(Xt)

IX -+ Y (IV.B.13)

X > Y.

f + and f- represent, respectively, the values of f just in front of and

just behind the wave front. For instance, in a shock wave we would have

i~ ~(Vi 0, [v] , 0, and [x3 = 0; i.e., the particle acceleration would undergo

3 a jump across the shock wave, but particle position would not. The above

equations were all defined with the assumption that V > 0, so that the

wave is propagating in the positive coordinate direction.

Now, consider derivatives of If], since these will be used later in

I the analysis of shock waves. Assume f(X,t) has a jump discontinuity at the

wave front, X = Y(t), but otherwise is continuous and differentiable.

Thus, clearly the jump If] is a function of time only through the position

3 X = Y(t). The derivative of Iff follows from the definition of the jump:

d ff d f(Y-(t), t)-f(Y+(t),t

V 3 92
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I af(Y
+ ,t) dY af+

ax dt at

I from which we get

I d if) = V + [atj (IV.B.14)

However, if we assume f is continuous across the wave front, then IfJ = 0,

and eq 14 gives

v [ - (Iv.B.15)

Equation 15 places restrictions on the jumps in the derivatives of f if f

is continuous at Y. Equation 15 is called Maxwell's theorem, although both

I eq 14 and 15 are also often referred to collectively as the compatibility

conditions for singular surfaces.

The compatibility equations can now be applied to the balance laws.

Recalling that a shock wave generates jump discontinuities in V,V, and 3v/3X,

I whereas x isccontinuous across the wave, Maxwell's theorem gives

I IV) =-V ax (IV.B.16)

To calculate the pressure jump across a pressure wave, integrate eq 7 from

St where < Y(t) < X, to obtain

t a P ; weP(xt)+p(%xt p0t) dx a

Or, by breaking the integral on the rightithand: &de:.Into twopparts, we get

i -p(XBt) + p(Xa, t) =

(fY(t) fx0a f Po A€"dX + f OIt 0 x d)(IV.B.17)
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Now, taking the limits of X. Y-(t), X Y +(t), and using eq 16 and

I Leibnitz's rule to differentiate the integral on the right-hand side, we obtain

[p] - PP [x; -pv [vI (IV.B.18)

I This equation is a familiar jump equation that relates the pressure jump

a across the wave to the jump in the particle velocity and wave speed. A

similar procedure applied to eq 9 results in

I " -= -o [A) (IV.B.19)

a0
Therefore, we see that the material has a jump in a if the wave is a shock

wave, since [v] is nonzero. Combining eq 18 and 19 gives

2

I [p] -. .[a (IV.B.20)a0

which is a well known relationship for shock waves relating pressure jump

across a wave to the jump in density ratio.

Evaluating eq 7 both ahead of and behind the wave front, then letting

X approach Y(t) and subtracting these two forms of eq 7 lead to:

Ijj -= -Po (I.B.21)

Equations 18-21 are all widely recognized jump equations for stress waves

and are applicable to both steady and nonsteady waves.

We now analyze in detail the propagation of steady waves before considering

the details of nonsteady stress waves.

IV.C. STEADY SHOCK WAVES IN SNOW

To investigate further the properties of steady waves we now return to

the jump equations, eq IV.B.18-21. If the material is at rest Just prior

to the stress wave arrival, the jumps [p3 and (v] equal the values of p and

v as the wave passes. Denoting the steady values of a and p behind the wave

by the asterisk, ', eq IV.B.18. IV.B.21 can be put in the following respective

forms:
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01* 0 P* (IV. C. 1)

0 2

V V (IViC.2)

From here on an asteris will denote the value of a variable behind

l the wave, i.e., in the steady condition after the wave has passed. The

terms v, a, and p refer to the values of the respective variables at any

Ipoint in the wave. As indicated earlier, eq 1 add 2 result strictly from

consideration of the balance principles and do not involve the material

l properties in any way. We now investigate the effect of material properties

on the momentum balance equation.

Case 1: Steady waves in medium density snow.

In the following the constitutive equation based on the pore

( collapse (eq II.B.47) is used. Later steady waves in low density snow is

considered. First, however, Eq II.B.47 has to be modified to include

the intergranular inertial term as defined by eq. II.B.44. Eq II.B.47 is

valid for quazi-static deformations in which inertial effects are

negligible.

KThe complete constitutive law is

* p - - n ( _--) 2(SO - C) + cln Je
0 a (a-1)

ax da (IV.C.3)

where

S3 a 1 2/3 -2/3 ) V.C.4)

2)

2 2 L1 213 0/3)

Q . -3- o -l) -(VC4

p 2 p / 3(a 0 - 1) 2/3 (IV.C.5)
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The inertial term given in eq 3 is essentially the acceleration potential term

Pm (*b- 4'1) defined in eq II.B.44, except that a and b have been eliminated and

the equation has been algebraicly reorganized. Some simplification of the

acceleration term can be made. Except under extremely severe shocks, the term

containing a can be neglected. Later in the paper this will be done.

In a steady wave, the solution to the balance equations may be expressed

in terms of the single variable

YJ- X-Vt. (IV.C. 6)

Substituting the constitutive law into eq IV.B.20 and changing variables

from X and t to n by use of eq 6 we find after some algebra

I - p.~0 V2  -0 4c/6t0 ln( )
2(S -C)+C ln (ai) 2)

2 22

T- -t (Q(, oa) (IV.C.7)

The prime denotes differentiation with respect to the variable T. After

integrating the above, we get

1e 2 z
(a-a) - (+ QI/

3o 0 2 0))

2 2VT
= ~~ (a, (& a))+ ln(

-4.a.
1(2 (n Aa) dc (IV.C.8)2(S0-C) +C ln

The above equation describes the density ratio jump across the wave, once the wave

speed is known. However, this is an integro-differential equation and would have

to be solved by a numerical method or some other approximate method.

In cases where strain rates are not extremely large, eq 8 would have

I to be used, since it makes use of the more complete constitutive equation,
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eq 3. Such would be the case for low-frequency, large-amplitude waves.

However, if one is considering shockwaves, the strain rates become

4 6 -1
very large, say on the order of 10 -10 s . Under these extremely high

rates, the constitutive equation can be simplified somewhat, since the yield

stress of ice becomes only weakly rate dependent. This can be seen in eq.

IX.A.3 where at large values of D, Y changes only slightly with significant

changes in D. Consequently, if Y is replaced by a constant value Yo = 300 bar,II
the constitutive equation developed in section II.A can be reduced to the

I following form

2Y 1 2
0 I _ d Q(a ,,) (IV.C.9)

3 i_ 2 da

I This equation is obviously more tractable than the earlier equation. The value

of Y 0 300 bar was chosen since this yield stress is consistent with strains

actually generated in many shockwaves (D ̂ 2x10 s ), and a range of D between

10 4s- 1 and 10 6s- places the actual yield stress Y within ten percent of the

value of Y - 300 bar.
0

Substituting eq. 9 into eq IV.B.20, we obtain

PV2 (a-c O) 2Y o & e- /aoo M 0J In.

2 dot a (, ,,)) (IV.C. 10)

or, upon integrating,

2 [ ' 2

(a-c2 )~ 2 0

2 2
-VT

2 (Q (a'OOa)7
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i
In steady waves, a = 0, and a = 0 both ahead of and behind the wave;

therefore (Q(a, Ma) vanishes. Substituting eq. IV.B.18 into eq. 11 for

steady waves then gives

ay out fi a in (teati)e ru0 d )

a
0

*2 
- .t (a*/a j)-1 (IV.C.12)

Carrying out the indicated integration results in

o*a0  4t/ , a
(h 

r 1 
-*) 

-e 0 9 1,l 
( I V .C .1 3)

Iw equtos1rne4gv h rsue upars h ae qain1

1 (1 " */% € % e
gl(*)= n ( n) i~u) +-

(In __a,+ 1Zf(L) (a* I I )(IV.C.14)

1*0  n-n! ka-0/
I i=i

i Equations 13 and 14 give the pressure jump across the wave. Equation 10

can then be used to calculate the wave profile, i.e., the variation of the density

ratio a inside the stress wave. This can be accomplished by inverting eq. 10 to

obtain

n -o F( O V)-0, (IV.C.15)
* 0

where n is the variable defined in eq 6, and

F(,a O, V) =n e3f(8) 0ln( e dl1

I 0
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+ 2p (2 0 0 /  (Iv.c.16)

3 Setting a = a* in eq 15 then gives n., the length of the wave, but this equation

can also be used to calculate the a-11 profile during the passing of the wave.

.Napadensky (1964) conducted an extensive testing program on shock waves in*
snow at Camp Century. These experiments involved snow with densities generally

-3
higher than 400 kg m . The stress waves were generated by using a low-density

explosive to drive a metal plate into solid cylindrical specimens. By

varying the amount of explosive and the mass of the driver plate, a wide

range of load conditions was achieved. The explosive technique, however,

I usually has a considerable amount of experimental scatter.

A streak camera was used to record the motion of etch marks on the

snow specimen and the driver plate. In this way, both particle velocity

V and wave velocity V were recorded photographically. Since the speed

of the camera was such that the exposure time was only about 5 ps,

fairly good time resolution was achieved. However, as indicated by

Mellor (1977), large errors were incurred in the experimental program.

There was a very poor resolution at the lower pressure levels, and it is

3 questionable whether or not Napadensky's reduced data accurately reflected

the actual stress wave parameters. However, for the intermediate range

of stress wave pressures, the data appeared reasonable, since the streak

film recordings appeared to have both good time resolution and ability

to record particle displacement.

* Figures 33 and 34 give a direct comparison of the theory and Napadensky's

experimental results, and as can be seen the two compare fairly well.
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Figure 33 shows the pressure jump across the wave as a function of the

density jump Ap caused by the wave. Figure 34 shows the variation of

plastic wave velocity V with particle velocity V*. For particle velocities

above 20 m s- , the data and theory compare nicely, but below that, they

deviate significantly. The theoretical curve terminates at the point

| |where the wave ceases to be fully plastic.
I iThe data in figure 34 at the lower particle velocities are questionable.

Napadensky shows the plastic wave velocity decreasing to zero as the

wave intensity (as indicated by V*) the particle velocity decreases and

this result defies physical reasoning. For instance, as the intensity

I of a shock wave decreases, the severity of the plastic deformation

should also decrease. As the amount of the plastic deformation becomes

less significant, the pressure wave should then begin to acquire character-

istics of an elastic wave. Equation IV.B.20 can be used to find the

wave speed:

I v2= o * (IV.C.17)
PO At*

3 If Ap*/A* does not approach zero as the stress wave intensity decreases,

V 2must remain finite at low plastic strains. One would expect Ap*/t* to acquire

a value close to the elastic modulus. This argument is also supported

by other analytical work, such as that of Coleman et al. (1964), on the

theory of wave propagation in nonlinear materials. in particular, we

note the familiar equation

3 v2  E /P0  (IV.C.18)

where for shock waves E is the instantaneous secant modulus, and for

acceleration -sv E . the instantaneous tangent modulus. In either
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stress wave, E increases as the degree of plastic deformation decreases,

p
I i.e., as a smaller percentage of the material is deformed plastically. As

a result, E appraoches E, Young's modulus of the material, and V thereby
p

I increases to a value close to the elastic wave speed for weak plastic

waves.

I In the case of strong stress waves that produce complete plastic

5 deformation of the matrix material and large jumps in density, the work-

hardening characteristics of the material become important in determining

the resulting wave speed. In particular, Ep increases as a result of

densification and work-hardening effects, thereby resulting in larger

balues of V as indicated by eq 18. Consequently, a very strong plastic

wave has a large wave speed. The above reasoning justifies the minimum

calculated value of V shown by the curve in Figure 34. This minimum is

I located near the transition zone between partially plastic and fully plastic

waves.

, wasFigure 35 - 37 present results of parametric studies of stress waves

in snow. Figure 35 shows how the density ratio varies through the front of

the stress wave. For the less intensive wave, a shorter wavelength is

required to generate the acceleration forces necessary to produce the

compaction to decrease a from 3.0 to 2.0.

Figure 36 illustrates the variation of pressure jump 1p] with density

jump for a range of initial densities. Note that as the initial density is

increased, the curves are translated upward. Figure 37 also gives a very

dramatic demonstration of the effects of work-hardening characteristics of

snow. At low pressures, the plastic wave speeds are as expected; i.e.,

wave speed increases with density. But at higher pressures, this relationship

5is inverted, since large changes in a must accompany the large pressure
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jumps for snow with initial low densities. Consequently, there is con-

siderable work-hardening, which has a stiffening effect, and this results

in increased wave speeds. Snow with high initial densities would not

j undergo as much work-hardening.

Case 2: Steady waves in low density snow.

For this case, the neck growth model constitutive equation is used,

I since densities as low as 100 Kg m -3 may be studied. Other than the

constitutive law, the analysis is identical to that presented in Case 1.

I Consequently only the results and discussion is presented here. The final

expression for the pressure jump is

S* (2_ a 0 * -1f ln ( J,'A) da (IV.C.19g)
p* = 3 (a - (a ---a0 )  ao 0 1F

Figures 38-40 illustrate the results of this study. Unfortunately

only a small amount of experimental data is available for a comparison with

these results. To date the most comprehensive experimental study is that of

I Napadensky (1964). However, Napadensky's experiments were conducted with
-3

snow with desnities of 0.5 Mg m or higher, so a direct comparison with

the calculated results here is not possible for low-density snow.

Figure 38 illustrates the variation of pressure jump with density for
-3

several different initial densities, including 0.5 Mg m , which is compared

I with Napadensky's data. As can be seen, the results agree with the data

for that initial density. In Figures 38 and 39, the dominant frequency of the

wave was 200 kHz. This frequency would correspond to what is produced by

high-speed explosives.

Figure 39 shows the manner in which the wave speed varies with the

I wave intensity as determined by the pressure jump. In particular, for

each initial density the wave speed has a local minimum at low values of
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waves in snow represented by neck growth model.
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wave pressure. This is attributable to the work-hardening properties of

snow under volumetric deformations. As the snow is compacted, the necks

rapidly thicken, wh,..;h in part enhances the material strength. In addition,

the large deformations which occurs in these necks also work-harden the

neck material, thereby further increasing the snow strength. This resulting

increase in material strength results in an increased wave speed since the

wave speed is determined by the ratio of p*/(a* - a0 ).
1 

.0

Figure 40 illustrates the effect of wave frequency on the pressure

jump for pressure waves which produce a density jump of 0.2 Mg m3. Curves-3

are presented for initial densities of 0.1, 0.2, and 0.3 Mg m . As can be

I seen, the pressure jump increases with wave frequency, although the dependence

of pressure jump on frequency is not as significant as the dependence on

density.

The stress-wave analysis reported here has been shown to agree well

with the only experimental data the author is aware of. Unfortunately the

data are available only for snow with an initial density of about 0.5Mg

-3
m . Consequently, no definite conclusions can be made about the validity

of the theoretical results for snow with initial densities below 0.5 Mg m

I ~However, the volumetric equation upon which this study is based has

been shown to represent accurately the response of snow under quasi-static

* -3
load conditions for densities as low as 0.1 Mg m . Consequently, the low-

density stress-wave results shown here should at least be qualitatively

correct.

The wave speed was found to be strongly dependent on initial density

and the pressure jump across th wave front. Since the pressure is only

moderately affected by frequency, the wave speed is also only moderately

11
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0
I frequency dependent.

' I The dependence of wave speed and pressure jump on density is not as

straight-forward as it is for pressure waves which produce infinitesimal

strains. In the case of pressure waves that produce large density changes,

pressure jump and wave speed depend on both the initial density pO and the|*
final density p . The complicatated relationship can readily be observed

I in Figure 39.

The type of pressure wave described in this case is not commonly found

in nature. However, it does play a central role in determining the effect-

iveness of explosives in initiating avalanches, since a good portion of the

explosive energy that is transmitted to the snowpack is absorbed in the

crater zone through inelastic compaction of the snow. This type of deformation

also is largely responsible for the attenuation of the pressure wave as it

propagates away from the crater formed by the explosive. All of this

decreases the energy that is delivered to the snowpack for the purpose of

I starting avalanches.

The result that the wave pressure-jump increases with wave frequency

would imply that the energy absorbed irreversibly by the snow also in-

creases with frequency assuming that Po and p* are held constant. This in

turn would imply that the attenuation rate would increase with frequency,

since larger amounts of energy are dissipated in the snow as frequency

3 increases. However, since this is weakly frequency dependent, the effect

of frequency on attenuation rate is probably not as important as p* and Po

Sfor plastic waves.
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IV.D NONSTEADY SHOCKWAVES

If the wave is nonsteady, the wave front profile, amplitude and wave

speed may all change with time. Material nonlinearity and internal dis-

sipation mechanisms are accountable for this. In some cases, the wave

amplitude may actually grow, although such a situation is generally short-

lived. Coleman et al. (1961 have studied the properties of nonlinear

waves in some detail. Sizi,.e that time considerable effort has been devoted

to the study of stress wa- i in nonlinear or inelastic materials. More

i recently, Nunziato am] Walsh (1978) have investigated the propagation of

waves in uniformly distrbuted granular materials. In their paper they

3 indicated that, in a granular material, the only density change induced by

a shock wave must come from compaction of the matrix material and not from

I reduction of void volume. This result contradicts the results of this study

(IV.B.19) and the experimental results of Napadensky (1964).

We have developed now the wave equation for a material with a volumetric

constitutive equation of the form given by eq IV.C.3.

Differentiating eq IV.B.9 with respect to time, and then substituting

the equation of motion eq IV.B.7, yield

1 a ( -apO = 1 (IV.D.1)

Po0 ax ax a0 aoat2

Then, substituting eq IV.C.3 directly in the above equation, we get, after

I some rearranging, 2

E a2 + aET act= P0  a2tT 2 t 2ax ax 0 at

+ a - xE + 2  (IV.D.2)

In order to solve this equation, a finite difference solution can be used.

This equation is extremely nonlinear, since ETo E1, and E2 are all functions

*• ~ of a. ,and i. Therefore, convergence and stability problems are difficult
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to handle. A central differencing technique is used. At position X and

time t. let a have the value a.. Then the difference forms of the timeI )
and spacial derivatives of a become

I j+l j-1i -ai (IV.D.3)
-i 2At

a j+ 2aj+ j+a j-
1

i 1i ( 1 1 I i1 (IV.D.4)

laaj ai -a i-(
i i+l i-1 (IV.D. 5)I ~ ~~~ax YAX- 2 i*l ax+?

2 j =aj+l j-1,0(i = i+l +i+l -2 i  +i ) -+ ii(VD6

a2  2(x 2  (IV.D.6)ax2  2 (Ax)

The form shown in eq 6 is used for the second order derivative, since this

averaged derivative results in improved stability characteristics of the

finite difference solution, as indicated by Ames (1965).

I In solving the problem, a double modulus was employed. During pressure

buildup, IV.B.l gives the appropriate tangent modulus, which becomes

E 2Y~je 40a0 f1(a) 2 YT 1 0 (-f ( a f ( (IV.D.7)- - Yo ( a)a1- o(a)' 2

I3a 2  2 3

i where

f 1 +(l+$-)ln ( ) (IV.D.8)
1 (aL-l) 0I fl =  a) f (10 u

g(a) + 1 (IV.D.9)I2 3(1 012

'1I
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f 2 1 1 + g (a)

3 -9a 7/3 7/3 2 (IV.D. 10)
Wa-i) 01 Ga

g C(i)4/3  -4/3 (IV.D.11)

-1/3 -1/3

f = (a-1) - / (IV.D.12)

However, once a maximum pressure is reached, and unloading begins, the

static part of ET must decrease in order to avoid a large elastic rebound

in the finite difference solution. This rebound produces an artificial 4

I oscillation in the solution and is a common problem with finite difference

i methods. Various methods have been used to reduce this form of instability.

The easiest way to facilitate this is to decrease f by a factor of 1/2

Iwhen ; becomes negative. A factor of 1/2 is somewhat arbitrary, but this

value was found to be sufficient to avoid any significant volumetric rebound.

In order to demonstrate the solution, we consider the particular

i problem of an air blast directly over a snow covered ground surface. We

assume the blast produces an overburden pressure of the formI <

p = p* (1-cos wt) 0 < Wt < 2F

p - 0 Wt > 2W (IV.D.13)I
and calculate the attenuation of the wave as it propagates into the snowpack.

The frequency W = W/27 is determined by the speed of the explosion, and the

+ overburden pressure p* is determined by explosive size and proximity to the

snowpack surface. Of particular interest is the response of a snowpack to

an overburden pressure of about 20 bar since this is what the SULFAE (surface-

launched unit fuel air explosive) weapon system generates.

Figures 41-46 show results of the finite difference solution of the

nonsteady wave problem just described. Figures 41 and 42 illustrate how
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n a . . -a. . . . .. . ..

the wave form is altered as it propagates into snow with an initial density

-3
of 350 kg m . The surface loading has a frequency of w - 5000 Hz and an

amplitude of p* = 12 bar. Figure 41 shows the temporal variation of the

density change for points at 0, 1, 2, 5, and 8 cm into the snowpack.

Figure 42 demonstrates the density profile for various times. Note how the

wave spreads and the density rates p decreases as the wave propagates

further into the snowpack.

Figures 43 and 44 make a direct comparison of three different pressures.

Figure 43 compares wave attentuation in terms of density jump and Figure 44

shows the pressure attentuation. As can readily be seen, the advantage of

the higher pressures is largely eliminated within the first 10 cm. This

merely points out the substantial energy absorbing capability of snow.

As expected, the highly dissipe" Lye characteristics of snow rapidly

change the stress wave as it propagates through snow. For pressure waves

with a magnitude in excess of 5 bar, the pressure amplitude reduced to a

I small fraction within 10 cm. This result is to some extend verified by i

Wisotski and Snyder (1966). In the tests reported by Wisotski and Snyder,

one-pound spherical Penolite charges were detonated in deep mid-season

snowpack. Piezoelectric gages were used to record arrival times and pressures

to within 0.15 m of the charge. These transducers apparently had a broad,

I flat frequency range, so that the recorded results should be meaningful.

They also observed that the wave speed close to the charge was significantly

slower than further from the charge. However, there was a great deal of

scatter in measurement of arrival times, so no precise measurements were

made. But the pressure readings for a 6-bar pressure wave showed good

agreement with the results shown in Figure 44.

0 I Figure 45 shows the variation of the stress wave speed as the wave

propagates into the snow. Initially the 21-bar wave travels at a signi-
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ficantly higher speed, but this situation quickly changes. The variation

in stress wave speed is due to a combination of factors. The wave speed

initially decrease as the waves attenuate and work-hardening effects become

less significant. However, once the wave intensity is reduced to a critical

value, dissipative effects likewise become less significant and the wave

speed begins to increase. These results are in close agreement with those

shown in Figure 37 for steady waves. jI
Figure 46 shows the effect of wave frequency on attenuation. One can

readily see that higher frequency waves do attenuate more quickly, but this

effect is not all that great. Of the three waves shown, the difference in

pressure jump by the 5_cm position is only about 20%. The frequency difference

is partly erased by wave spreading, and probably the higher frequency wave

spread more quickly and therefore experience a quicker reduction in frequency

content,.

It is also possible to study the growth and decay of shock waves by

considering the jump equations. These equations cannot give as much information

3 as the direct approach just discussed, since stress wave profile and wave

length cannot be calculated from the jump equations. However, the direct

5 approach using the finite-difference technique is computationally a time-

consuming and expensive means of solving the problem. If wave attenuation

is sought, there should be more convenient means of doing this.

IV.4. THE USE OF JUMP EQUATIONS FOR ANALYZING NONSTEADY WAVE PROPAGATION..

I' A solution to the problem of shockwave propagation in a nonlinear

dissipative material can be a complicated problem if one attempts to determine

such wave properties as wavespeed, pressure profile, attenuation, and

alteration of the wave as the wave propagates into a medium. Spence (1973)

5 characterized wave propagation properties for viscoelastic materials.
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Generally a detailed analysis requires solution of the momentum and mass I
balance equations. In particular, if one desires a quantitative evaluation,

a numerical solution of these equations is usually required, but this can

be an expensive and time consuming procedure, since the solution of the

differential wave equation can involve a large number of simultaneous

~~difference equations. !
This can best be illustrated by considering the wave equation solved

numerically in the preceding section:

aI ._ aET 9a a 20 a a (El B + E2 aX

T ax2 ax Sx io t2

The constitutive law (for instance eq IV.C.3) can be conveniently writteni i in the following form.

Pi Q (nQCc 1) + Q2( 'F°x C + Q3 (° 0 ( IV.. .2)

The functions Q1 , Q2 and Q can readily be determined from eq IV.C.3. For

i purposes of this discussion, it is convenient to use eq 2. ET , E1 , and E2

are functions of OL,a,, so that the wave equation, which is basically the

differential equations of motion, and continuity, is a nonlinear fourth

order partial differential equation. Q1 . Q2 and Q3 are all continuous and

i differentiable functions of Oc and the initial ratio, a0. The above equation

was shown to accurately characterize the pressure response of snow to high

rate compressive deformations.

In this section a solution to the stress wave problem is presented and

compared to earlier results. The method used here entails the use of jump

equations, often referred to as weak solutions. The shockwave is defiled

as a smooth one parameter family of points Y(t) such that Y(t) gives the

material point at which the stress wave is located at time t. X is the

position of the particle in the reference configuration, and x - x(X,t) is
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Re.

the particle position for any time t. The intrinsic velocity of the wave

is

V d-Y(t) -Y (IV.E.3)
dt

If f (Xt) is any descriptive variable of the material, the jump in f,

denoted as (f] is the difference in the values of f just behind and in

front of the wave:

I where

f- lim f(x-6, t)I| 6" o

f lim f(X+6,t)
U 6 -'o

Here we assume the wave is propatating in the positive X direction. This

characterization of a shockwave depicts the wave as a singular surface,

i.e. the wave is assumed to have an insignificant wavelength, so that the

only properties which can be garnered from this description are the jumps

in variables across the wave. As a consequence, some information is lost,

since the internal structure of the stress wave cannot be studied. However,

I the problem becomes mathematically much more manageable.

In the following the governing equations and widely recognized relations

for stresswaves are again presented for more convenient reference. Then

additional results are developed to make possible calculations of the

growth and decay of stress waves by use of the jump equations. Finally,

I the current development is compared to earlier results.
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In what follows, we assume the stress wave is propagating into an

undisturbed medium. Thus a+ - and the pressure p, particle velocity

v, and density ratio rate a ahead of the wave all vanish. Therefore,

(a] - a -% (IV.E'.5)

(p- P_

(vJ =vIv] = v -

The derivative of the pressure p with respect to either time or position

has the form

0p- -B + BI & +E a
T E 1 d 2 (IV.6)

"-ET% + El; + E2a '

where a subscripted x denotes differentiation with respect to X. Then

the jumps in these variables may be shown to be

pj - T ()a] + E_ [6] + E [a] (IV.E .7)

tp I E- (OLxI + Ei [a + E tEL
p T a 1  x+ 2  x

ET, E, and E2 are the values of ET, E1 , and E2 just behind the wave. The

rate of change of (p) with respect to time may also be shown to be

(t M T [olt +E1 at + ,2 [alt (IV.9.8)

The subscripted t implies differentiation with respect to time. In the above

I lrepresents the change or jump in the value of the pressure derivative

across the wave, whereas [p) gives the rate of change of the pressure jump

Ip] as the wave propagates through the medium.

For a plane wave propagating in the X direction, the two governing differ-

ential equations are the momentum and mass balance equations. These are;

- (IV.E '.9)
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I
av (IV.9. 10)
a /Ia

These equations may be put in the form of jump equations in much the same

manner as was done by Coleman (1964) and Chen and Gurtin (1971). The difference

form for these equations are:

I Iagp/x x - ()]  (IV.E.11)

[av/ax] = [a/1 0 1 (IV.E.12)

Alternate forms of these two equations are

P) = VIV] (IV.E.13)

[v = -V( ax/aX] = - V]F] (Iv.E.14)

I [ - 1V [a] (IV.E.15)
a0

F is the deformation gradient, 3x/aX.

Equations 13 and 15 may be used to arrive at

v2 o ) (Iv.E.16)

The secant modulus for the material is defined as

E- p (IV.E.17)
I(a

so that the wave speed V then has the form

2V a E /p (IV. .is)

I In addition to the above, the familiar compatibility relation for shockwaves

:i I (Coleman et al 1964) is of considerable use in the study of shockwaves. If

f(X,t) is any function of position and time, the compatability relation requires

that

[fJt = [i] + V[f ] (IV.E.19)
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The above relations, eqs 11 - 19, are considered to be the standard jump

equations for the propagation of shockwaves in materials. They have been used

extensively in previous studies by Coleman et al (1964), Carrol et al (1973),

Chen et a1 (1971), and others to characterize the manner in which shockwaves

are propagated through materials, irrespective of the material properties.

We now use the foregoing relations to evaluate the growth and decay rates

of shockwaves in snow. Differentiating eq 15 and using eq 19 with f v

results with /

[(a) + V (a) t -a 0(Iv] + V~v 1) (IV.E.20)

Then substituting eqs 11 and 12 gives

V[a + Va]to' [px] V|c (IV.E.21)

This equation is then further modified by using eq 7, eq 9 with f = a and
I4

f = a, and eqs 13 and 15. After some algebra, we get 1.

00ValV -(E- + E-) [a] + (E -E) a (IV.E.22)
aT s t T s

V I ~+ E1  I] ~] + E2  {] -(]

V may be eliminated by differentiating eq 15 and substituting into eq 22 for

V. The result is

i(3E + Es) ) t- [a t (T - E-)

- 3.

9 -E1 i + E ( 1 at -J']) (IV.E.23)

As can be seen here, the full collection of moduli determine the rate of

change of [a) for the above form of the wave equation.

Some additional criterion for determining what constitutes the wave

3 amplitude is needed. For. instance, one can require that the wave has passed a
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point where the material is no longer being compressed, i.e. when ',a o, which

would be equivalent to requiring I&] = o. Rather than this, we impose the re-

quirement that the wave has passed a point when the peak pressure has been

reached. This is equivalent to the condition

[j] - o (IV.E .24) I
This then implies, with eq 7

A

-E- [&] + E_ [&) + E - o (Iv.19.25)

With this, [a] can be eliminated from eq 23, and we get i
1(3E- + E_)af -- E_ [a~ -E_ [&] + 2 E CL] (IV.E.26)2 T s t 21 t s 2

Eq 26, in conjunction with eqs 2, and 8 may be used to study the manner in

I which the stress wave propagates through snow. Given an initial set of conditions,

say [a] and [a], these equations may be solved to determine [pit, [a] and
tt

I [a3t and by numerical integration, the temporal variation of [p], [a],

and [a] can be evaluated.

Results in Section II indicate have the acceleration modulus is extremely

3 small, and the terms E_ []t in eqs 8 and 26 may be neglected. Therefore we

will assume that effects associated with E can be neglected and drop this

I term from eq 26.

m The formulation developed here may now be compared to results obtained in

*the earlier development where Eq 1 was integrated by a finite difference

3 method. In that section, the material constitutive equation for volumetric

deformation was given by eq 2 where Q., Q2, and areI 23 J

Q1 0 2"o---exP(- a/ao) In (al(a-1)

I

3 129



Q3 "- ( (_ll-/3 -1/31
_-- (a-i) -

In the earlier analysis, it was determined that a finite difference solution

to the wave equation gave very reasonable results when compared to what experi-

mental results are available. However, as is common in finite difference

solutions of higher order differential equations, stability problems were

incurred and had to be solved, and the required grid size resulted in long

computation terms.

Eq 26, with the term with E2 eliminated, can readily be put in a dif-

ference from in order to obtain expressions for (alt and [ ]t at any instant,

t. This equation and the compatability equation eq 19 with f - a can then be

used jointly to solve for (a]t and ] The compatability condition is• II
[+ [a (IV.E.29)

I can be evaluated by expanding a into a Taylor series about a point just

behind the shockwave. To demonstrate this, consider Figure 47, which shows
toa aprofiles resulting from the shockwave. The solid line describes the

wave profile at a time ti, and the dashed line represents the wave profile at

time tjI = t -tAt, where At is a small time increment. The wave has progressed a

distance Of AX - VAt during this time from position Xj_ 1 to Xj. t_ represents

the density ratio at ti'e tj and position Xj .== Xj - VAt. A Taylor series

expansion of a about point Xj- 1 is of the formf I..J1 Ato
ci -~ - a c(ti

which may be truncated to

0 aj-1 J-1

-I J-1 + At

10j-lt.1
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3 figure 47. idealized density profiles in a shockwave.
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for small values of At. Then, V[ I can be shown to have the form

j jX~~vict x  = v -

ad - V- Aj -l At
- i J-1 i-l

and eq 29 then has the difference form

Aalt = + j -1 j-1 (IV.E.30)A

and eq 26 in difference form becomes

2 j(E + (E) J(L - (E'J J = - (E) [a)J (IV.E.31)
T (3 j + j tj jtj sj

Upon using eqs 30 and 31 to evaluate (a]t and [a t at any instant tj where the

wave is located at position Xj, then [(] and (a] can be calculated by direct

step forward integration.

Figures 48 - 51 illustrates the results of the method described above.

In figure 48, wave pressure attenuation in medium density snow is calculated

and compared to experimental results of Wisotksi and Snyder (1964). As can be

seen, agreement with the data is excellent, although one should notice tha t

there is about a twenty five percent difference between the density used in

the calculations and in snow studied by Wisotski and Snyder. It is anticipated

that the attentuation in the lower density snow should be larger. Unfortunately

there still is a shortage of good shockwave data for making a more rigorou:

evaluation of the theory.

Figure 49 illustrates the attenuation of the pressure jump due to the

shockwave.Also included in the figures are results obtained by the full numerical

Usolution of eq 1 in the preceding section and in the paper by Brown

... . . ._--. , ...13 2
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I .Figure 48. Comparison of theoretical solution to experimental data.
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Figure 49. Comparison of two methods for calculating shockwave attenuation.
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(1980b) and in Section IV.C. As can be seen, some discrepancies between the

two theories emerge. There appears to be a fairly good correlation between

the two theories for the lower pressure waves, but for a pressure wave with an

initial amplitude of 21 bar, the two solutions diverge rather quickly. It is

not yet determind which theory is more correct. While the direct finite

difference solution of eq 1 would represent a more rigorous method than the

method presented here, the stability problems associated with numerical solution 4
of high order difference equations may introduce some numerical errors. -

Unfortunately there is no experimental data with which to compare these results.

Figure 50 compares the attenuation in the density jump, and Figure 51

illustrates how the wave speed changes as the wave propagates through a homo-

geneous snowpack. In both of these figures there do exist differences between

the two formulations although the results do show very similar trends.

The method described here for characterizing shockwave propagation in

materials such as snow has not been studied extensively in the past. When

jump equations have been used, their use has been restricted almost entirely

to calculations of density jump or wave speed. Very little effort has been

made toward evaluating wave attentuation or growth.

As has been shown, the use of weak solutions do appear to be a viable

means of investigating shockwaves without having to resort to complicated and

expensive numerical solution of the wave equation. While a numerical solution

was employed here, effort required to obtain a solution was but a small frac-

tion of the effort required for the solution of eq 1 in the paper by Brown

(1980b).

The numerical results here do imply that snow does strongly attenuate in

plastic stress waves. As has been shown, the wave amplitude is reduced to

about 10% of its original amplitude within 10 cm of propagation.
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V. EXPERIMENTAL PROGRAM ON STRESS WAVES IN SNOW.

Other than the pioneering work by Napadensky (1964), there has been very

little significant laboratory work on plastic shock waves in snow. Other work

includes studies on shock waves in wet snow by Wakahama and Sato(1977). Brown

(1979(a], (b], (c] has made theoretical studies of steady and non-steady waves

in snow, and the results appear reasonable when compared to what little experi-

mental evidence is available for stress waves.

In order to improve on the quantity and quality of shock-wave data, an

electromagnetic stress-wave generator has been constructed, and this instrument

is described in detail here. Other methods of generating shock waves could

have been used. For instance, explosives can be used to produce a wide range

of wave amplitudes, although wave frequency is not an easily controlled parameter,

and explosives also usually have a great deal of experimental scatter. The

electromagnetic generator was chosen, since it appeared to provide an optimum

combination of pressure and frequency capability. In addition it has negligible

experimental scatter and is easy to use. One drawback is the danger associated

with high voltages, and such a system must have incorporated into it safety

features to minimize this aspect of the system. However, the use of explosives

also requires implementation of safety features.

Basically, the electromagnetic generator consists of a 20 kV capacitor

with a capacitance of 30 PF, a triggering unit, a spark-gap trigger, and a

system of conducting plates and load strips. The generator works on the

principle that when two high-energy electric currents are conducted in opposite

directions along adjacent parallel strips, a strong repulsive electromagnetic

force is generated to force the two strips apart.

The capacitator and high-voltage side of the trigger are both completely

submerged in a tank filled with transformer oil, thereby insulating components
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and reducing any corona effects that might occur during charging of the capacitor.

A 20 kV regulated power supply is used to charge the capacitor, and charging

time generally is less than 5 min. The capacitor voltage can be read from

either a gauge on the instrument panel or from a digital voltmeter if more

accuracy is required. A 400 MS dropping resistor is used to drop the voltage

to the gauge. The digital voltmeter is connected to opposite ends of a 0.4 M

resistor in series with the dropping resistor, so that a 1 V output on the

digital meter corresponds to a 1 000 V charge in the capacitor. The digital

voltmeter is connected remotely to the generator, so that charge voltage can

be monitored from outside the cold room in which the testing is done.

As can be seen in figure 52, the electrical ciruuitry consists of three

separate components: (1) the trigger control system; (2) the power supply,

capacitor, and conducting elements; and (3) the monitoring instruments. While

these three separate systems are interconnected, they serve different purposes.

The trigger control unit outlined in Figure 52 serves several purposes.

First it controls power to the entire system. Second, when the power is

switched on, an electromagnet activates a high-voltage switch to close the

charging circuit to allow the capacitor to be charged. If the system is

turned off or a power failure occurs, the switch automatically opens to allow

I a limiting resistor to discharge the capacitor. In addition, a 100 MQ bleed

resistor is also permanently installed in the circuit to bleed the capacitor

down in case the H.V.*switch for the other resistor should fail. The control

3 unit also controls the power to the high-voltage power supply and contains

the trigger module which, by means of a transformer, pulses the spark gap with

I a 25 kV pulse. This ionizes the gases in the trigger which closes the circuit

3 and allows the current to be conducted across the spark gap, through a control

coil to the load strip and to the ground side. The coil is used to make the

i inductance of the conmplete system large enough so that the current will not
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exceed the maximum allowable current for the spark gap.

V.A ELECTROMAGNETIC THEORY

The generator is a LRC circuit, and the system performance is determined

by the differential equation

d ('Q) + R !& +2=0 (V.A.l)
dt dt C

where Q is the instantaneous capacitor charge, L is the circuit inductance, R

is the total circuit resistance, and C is the capactitance. In the underdamped

mode, the solution to eq 1 is

Q(t) IQ. exp ( -at)] (ai + st)sin wt +ncos w (v.A.2)

a = R/2L, (V A. 3)

I = /LC - (R/2L)2  WV.A.4)

The instantaneous current i(t) can be shown to be

i(t) - exp (-at)sin wt. (V.A.5)
(aLC

The current is exponentially damped, and if T is the period of the oscillating

current, the full-cycle peak-to-peak ratio of the current amplitude is

A 3
A = exp ( - aT), (V.A.6)

where A1 and A3 are the peak current values of two successive complete cycles.

The values of L and C may then be solved for in terms of C, T" and A3/A .

This yields (Snell and others, 1973)
2T ln (A3/AI)

C[(271)2 + (in (A3/A1)) 
2], (V.A.7)

2 2
C[ (270 + (ln (A3/A1))2] . (V.A.8)

I The pressure p produced between the two conducting strips varies with the

i current as
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p W (V.A.9)

where w is the strip width, and U is the magnetic permeability of the material

separating the strips, which, in this case is 0.254 mm thick Mylar. Equation

9 is valid so long as the strip width w is large compared to the separation of

the conducting plates.I-
V.B ASSESSMENT OF GENERATOR PERFORMANCE

In its present form, the generator has about 6000 J of energy when charged

to 20 kV. Maximum current with this configuration is about 160 kA. The spark

gap, however, is designed for a maximum current of about 100 kA, so the maximum

voltage used to date is about 15 kV. This level of current and voltage was

however, found to be sufficient to produce high-pressure shock waves in snow.
~When the system was originally completed 'and first tested, the resistance

4
and inductance were found to be 3.75 mn and 85 nH, respectively, and a capacitor

voltage of 15 kV resulted in currents of about 275 kA, which, after about 20

shots, destroyed the spark gap. After that, the control coil shown in figure 52 A
was placed in series between the capacitor and load strips to raise L and R to

values of 650 nH and 19 nf2, which keeps the maxinum current below 100 kA when

the capacitor voltage is less than 15 kV. This is significantly lower than

the potential system output (450 kA at 20 kV) when the control coil is removed,

but to date a spark gap to handle these current levels has not been constructed

for the stress-wave generator.

The current in the circuit is monitored by a Rogowski coil that is encircled

by the conducting strips nxear the end of the load strips. This coil is simply

a length of insulated wire that is looped and twisted tightly into a shorter

length. When this is placed adjacent to the conducting strip (in this case,

at a point near the load strip), the electromagnetic field set up by the large

current produces a voltage across the leads to the Rogowski coil. Actually it
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makes little difference if the coil encircles the strip or is encircled by the

strip itself, as was done in our case. The electromagnetic field produces aI

voltage across the coil leads in either case. The voltage across the leads

from the Rogowski coil (Snell and others, 1973) is proportional to the instan-

taneous voltage in the capacitor. The output from a typical oscilloscope

trace of the coil output is shown in figure 53. Snell and others (1973) have

shown that the maximum current can be determined from the period T of the -4

Rogowski output and the full-cycle peak-to-peak ratio A3/A1 of the voltage

I generated across the coil. This relation is

2I (A3  .1/4 (V.B.l)

max o To (--

From figure 53, A3/A1 = 0.611, T = 30 Us, so for a capacitance of 30 UF

and a voltage of 15 kV, a maximum current of 84 kA is developed. Under these

conditions, a pressure in excess of 5 000 kPa can be produced for a specimen

with a 10 cm x 2.5 cm cross-section.

The test procedure is relatively simple. While the capacitor banks are

uncharged, the specimen is cut and shaped and mounted on the load strips, and the

I pressure transducer is then positioned at the top end of the specimen. Then the

capacitor bank is charged, which generally takes less than 5 min. When the de-

sired voltage is reached, the spark gap is pulsed, thereby completing the teStr-

The Rogowski coil and transducer output aret recorded on trace oscilloscopes.

Repeatability of the system is excellent, with generator output scatter being

less than 5%.

V.C. TEST RESULTS WITH THE ELECTROMAGNETIC STRESS WAVE GENERATOR

A testing program was initiated during the research project funded by the

Army Research Office. The purpose of the project was to evaluate the propagation

of shockwaves in low density snow. In all, about 150 shockwave tests were run on
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specimens with initial densities ranging from 150 Kg m- 3 to 300 kg m - 3  The

reduced data is represented in Figures 54-58. These tests are separated into

ranges of density and the pperkting voltage of the stress wave generator.

I As was indicated earlier, the spark gap trigger was incapable of withstanding

I currents in excess of 100 kA, even though the stress wave generator had the

capability of producing currents as large as 460 kA. Therefore, the tests had to

be run at pressures which were only about 5% of its full capability. Financial

constraints would not allow the purchase of a trigger which could handle these

I large currents.

In all tests, natural snow gathered from the Bridger Mountains was used.

Seived snow~normally has densities in excess of 350 kg m- 3 and hence could not

be used. In addition seived snow has different mechanical properties than natural

snow of comparable densities, since seiving alters the granular bonding and the

i manner in which the grains interact with each other during loading and deformation.

Since interest was in natural snow, it was decided to not use seived snow.

The decision to use natural snowpack resulted with its own set of problems.

j For instance, natural snowpack is normally nonhomogeneous. Density tends to vary

considerably, and it is also difficult to avoid finding small ice crusts, surface

I hoar layers or sun crust layers in the snow. Sometimes these layers are very hard

l to detect. However, they do affect the nature in which stress waves are propoa-

gated through snowpack. They act as a surface which reflects part of the wave

3if the surface is perpendicular to the propagation direction.
Natural snow is also much more difficult to handle and test than seived

snow, particularly if the density is low. Often specimen damage can occur, thereby

3 zesulting with bad test results. In addition, it is often difficult to obtain

good surface contact between the specimen and loading strip and betweeen the specimen

S and the pressure transducers.
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I, The difficulties cited above results with an abnormally large number

of bad shockwave tests. Of the approximately 150 tests that were run, only

a little more than 50 tests gave valid results, and these are shown in

I Figures 54-58. These tests, however, do form a basis upon which to evaluate

shockwave propagation properties of low density snow.

i At the time of the writing of the report, an analytical solution of

nonsteady wave propagation in low density snow was being worked on but asI
of then, unfinished. This solution was was based on the neck growth model

described earlier in this report.

The test data does show that shockwaves do attenuate rapidly in low density

snow. Shockwave amplitude drops to less than 10 percent within 10 cm of propa-

I gation distance. These results are consistent with results obtained previously

for higher density snow.

I
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IV!. CONCLUSIONS

Presented in this report has been the research efforts of the author during

i the three year period of a research graht funded by the Army Research Office,

Research Triangle Park, NC. The purpose of the grant was the investigation of

high rate volumetric properties of snow with special emphasis on shockwaye propa-

gation. It is felt that progress was made in gaining a better understanding of

the unique properties of snow when subjected to high rate deformations. Applications

of theory to such problems as vehicle mobility in snow and shookwave propagation

has been shown to give results which seem realistic and reasonable. This last

phrase was used,since there still does not exist enough experimental data to draw

l definite conclusions.

More work still needs to be dune to gain a better understanding of the high

i rate properties of snow. For instance, a constitutive law to accurately describe

the behavior of snow under multi-axial deformations needs to be developed. Such

a result could find application to a number of problems, including vehicle grade-

ability, penetration mechanics, shear wave propagation, to name a few. In

addition, there is still a need for more data, so continued shockwave testing

Uand high rate testing should also be encouraged when possible.
U
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